ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dom2g GIF version

Theorem f1dom2g 6259
Description: The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6261 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
f1dom2g ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom2g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1f 5112 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 5079 . . . . 5 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1202 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
433coml 1145 . . 3 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
5 simp3 940 . . 3 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
6 f1eq1 5107 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
76spcegv 2686 . . 3 (𝐹 ∈ V → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
84, 5, 7sylc 61 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
9 brdomg 6252 . . 3 (𝐵𝑊 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1093ad2ant2 960 . 2 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
118, 10mpbird 165 1 ((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  w3a 919  wex 1421  wcel 1433  Vcvv 2601   class class class wbr 3785  wf 4918  1-1wf1 4919  cdom 6243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-dom 6246
This theorem is referenced by:  ssdomg  6281
  Copyright terms: Public domain W3C validator