ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmeng GIF version

Theorem fndmeng 6312
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 5404 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐹 ∈ V)
2 fnfun 5016 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
32adantr 270 . . 3 ((𝐹 Fn 𝐴𝐴𝐶) → Fun 𝐹)
4 fundmeng 6310 . . 3 ((𝐹 ∈ V ∧ Fun 𝐹) → dom 𝐹𝐹)
51, 3, 4syl2anc 403 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → dom 𝐹𝐹)
6 fndm 5018 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76breq1d 3795 . . 3 (𝐹 Fn 𝐴 → (dom 𝐹𝐹𝐴𝐹))
87adantr 270 . 2 ((𝐹 Fn 𝐴𝐴𝐶) → (dom 𝐹𝐹𝐴𝐹))
95, 8mpbid 145 1 ((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  Vcvv 2601   class class class wbr 3785  dom cdm 4363  Fun wfun 4916   Fn wfn 4917  cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-en 6245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator