![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en2sn | GIF version |
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1g 6300 | . 2 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1𝑜) | |
2 | ensn1g 6300 | . . 3 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1𝑜) | |
3 | 2 | ensymd 6286 | . 2 ⊢ (𝐵 ∈ 𝐷 → 1𝑜 ≈ {𝐵}) |
4 | entr 6287 | . 2 ⊢ (({𝐴} ≈ 1𝑜 ∧ 1𝑜 ≈ {𝐵}) → {𝐴} ≈ {𝐵}) | |
5 | 1, 3, 4 | syl2an 283 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 {csn 3398 class class class wbr 3785 1𝑜c1o 6017 ≈ cen 6242 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-1o 6024 df-er 6129 df-en 6245 |
This theorem is referenced by: fiunsnnn 6365 unsnfi 6384 frecfzennn 9419 |
Copyright terms: Public domain | W3C validator |