| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inelr | GIF version | ||
| Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| inelr | ⊢ ¬ i ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ine0 7498 | . . 3 ⊢ i ≠ 0 | |
| 2 | 1 | neii 2247 | . 2 ⊢ ¬ i = 0 |
| 3 | 0lt1 7236 | . . . . . 6 ⊢ 0 < 1 | |
| 4 | 0re 7119 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 5 | 1re 7118 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | ltnsymi 7210 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
| 7 | 3, 6 | ax-mp 7 | . . . . 5 ⊢ ¬ 1 < 0 |
| 8 | ixi 7683 | . . . . . . . 8 ⊢ (i · i) = -1 | |
| 9 | 5 | renegcli 7370 | . . . . . . . 8 ⊢ -1 ∈ ℝ |
| 10 | 8, 9 | eqeltri 2151 | . . . . . . 7 ⊢ (i · i) ∈ ℝ |
| 11 | 4, 10, 5 | ltadd1i 7603 | . . . . . 6 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
| 12 | ax-1cn 7069 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 13 | 12 | addid2i 7251 | . . . . . . 7 ⊢ (0 + 1) = 1 |
| 14 | ax-i2m1 7081 | . . . . . . 7 ⊢ ((i · i) + 1) = 0 | |
| 15 | 13, 14 | breq12i 3794 | . . . . . 6 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
| 16 | 11, 15 | bitri 182 | . . . . 5 ⊢ (0 < (i · i) ↔ 1 < 0) |
| 17 | 7, 16 | mtbir 628 | . . . 4 ⊢ ¬ 0 < (i · i) |
| 18 | mullt0 7584 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ i < 0) ∧ (i ∈ ℝ ∧ i < 0)) → 0 < (i · i)) | |
| 19 | 18 | anidms 389 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i < 0) → 0 < (i · i)) |
| 20 | 19 | ex 113 | . . . 4 ⊢ (i ∈ ℝ → (i < 0 → 0 < (i · i))) |
| 21 | 17, 20 | mtoi 622 | . . 3 ⊢ (i ∈ ℝ → ¬ i < 0) |
| 22 | mulgt0 7186 | . . . . . 6 ⊢ (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i)) | |
| 23 | 22 | anidms 389 | . . . . 5 ⊢ ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i)) |
| 24 | 23 | ex 113 | . . . 4 ⊢ (i ∈ ℝ → (0 < i → 0 < (i · i))) |
| 25 | 17, 24 | mtoi 622 | . . 3 ⊢ (i ∈ ℝ → ¬ 0 < i) |
| 26 | lttri3 7191 | . . . 4 ⊢ ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) | |
| 27 | 4, 26 | mpan2 415 | . . 3 ⊢ (i ∈ ℝ → (i = 0 ↔ (¬ i < 0 ∧ ¬ 0 < i))) |
| 28 | 21, 25, 27 | mpbir2and 885 | . 2 ⊢ (i ∈ ℝ → i = 0) |
| 29 | 2, 28 | mto 620 | 1 ⊢ ¬ i ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 (class class class)co 5532 ℝcr 6980 0cc0 6981 1c1 6982 ici 6983 + caddc 6984 · cmul 6986 < clt 7153 -cneg 7280 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-ltxr 7158 df-sub 7281 df-neg 7282 |
| This theorem is referenced by: rimul 7685 |
| Copyright terms: Public domain | W3C validator |