![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqex | GIF version |
Description: Existence of the sequence builder operation. (Contributed by Jim Kingdon, 20-Aug-2021.) |
Ref | Expression |
---|---|
iseqex | ⊢ seq𝑀( + , 𝐹, 𝑆) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iseq 9432 | . 2 ⊢ seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
2 | frecex 6004 | . . 3 ⊢ frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V | |
3 | 2 | rnex 4617 | . 2 ⊢ ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∈ V |
4 | 1, 3 | eqeltri 2151 | 1 ⊢ seq𝑀( + , 𝐹, 𝑆) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1433 Vcvv 2601 〈cop 3401 ran crn 4364 ‘cfv 4922 (class class class)co 5532 ↦ cmpt2 5534 freccfrec 6000 1c1 6982 + caddc 6984 ℤ≥cuz 8619 seqcseq 9431 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 df-frec 6001 df-iseq 9432 |
This theorem is referenced by: clim2iser 10175 clim2iser2 10176 iisermulc2 10178 |
Copyright terms: Public domain | W3C validator |