ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulge0 GIF version

Theorem mulge0 7719
Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulge0 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))

Proof of Theorem mulge0
StepHypRef Expression
1 remulcl 7101 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21ad2ant2r 492 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
3 0re 7119 . . . 4 0 ∈ ℝ
4 ltnsym2 7201 . . . 4 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
52, 3, 4sylancl 404 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵)))
6 orc 665 . . . . . 6 ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵)))
7 reaplt 7688 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
82, 3, 7sylancl 404 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 ↔ ((𝐴 · 𝐵) < 0 ∨ 0 < (𝐴 · 𝐵))))
96, 8syl5ibr 154 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → (𝐴 · 𝐵) # 0))
10 simplll 499 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 ∈ ℝ)
11 simplrl 501 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 ∈ ℝ)
12 recn 7106 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
13 recn 7106 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 mulap0r 7715 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1513, 14syl3an1 1202 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
1612, 15syl3an2 1203 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
17163expia 1140 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1817ad2ant2r 492 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → (𝐴 # 0 ∧ 𝐵 # 0)))
1918imp 122 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
2019simpld 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐴 # 0)
21 reaplt 7688 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
223, 21mpan2 415 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2322ad3antrrr 475 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2420, 23mpbid 145 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐴 < 0 ∨ 0 < 𝐴))
25 lenlt 7187 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
263, 25mpan 414 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
2726biimpa 290 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ¬ 𝐴 < 0)
2827ad2antrr 471 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐴 < 0)
29 biorf 695 . . . . . . . . 9 𝐴 < 0 → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3028, 29syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐴 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
3124, 30mpbird 165 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐴)
3219simprd 112 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 𝐵 # 0)
33 reaplt 7688 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
343, 33mpan2 415 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3534ad2antrl 473 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3635adantr 270 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 # 0 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
3732, 36mpbid 145 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (𝐵 < 0 ∨ 0 < 𝐵))
38 lenlt 7187 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
393, 38mpan 414 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
4039biimpa 290 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ¬ 𝐵 < 0)
4140ad2antlr 472 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → ¬ 𝐵 < 0)
42 biorf 695 . . . . . . . . 9 𝐵 < 0 → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4341, 42syl 14 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → (0 < 𝐵 ↔ (𝐵 < 0 ∨ 0 < 𝐵)))
4437, 43mpbird 165 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < 𝐵)
4510, 11, 31, 44mulgt0d 7232 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 · 𝐵) # 0) → 0 < (𝐴 · 𝐵))
4645ex 113 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) # 0 → 0 < (𝐴 · 𝐵)))
479, 46syld 44 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → 0 < (𝐴 · 𝐵)))
4847ancld 318 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐵) < 0 → ((𝐴 · 𝐵) < 0 ∧ 0 < (𝐴 · 𝐵))))
495, 48mtod 621 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ¬ (𝐴 · 𝐵) < 0)
50 lenlt 7187 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
513, 2, 50sylancr 405 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
5249, 51mpbird 165 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  wcel 1433   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981   · cmul 6986   < clt 7153  cle 7154   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  mulge0i  7720  mulge0d  7721  ge0mulcl  9005  expge0  9512  bernneq  9593  sqrtmul  9921  amgm2  10004
  Copyright terms: Public domain W3C validator