Proof of Theorem recgt0
| Step | Hyp | Ref
| Expression |
| 1 | | 0lt1 7236 |
. . . . 5
⊢ 0 <
1 |
| 2 | | 0re 7119 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 3 | | 1re 7118 |
. . . . . 6
⊢ 1 ∈
ℝ |
| 4 | 2, 3 | ltnsymi 7210 |
. . . . 5
⊢ (0 < 1
→ ¬ 1 < 0) |
| 5 | 1, 4 | ax-mp 7 |
. . . 4
⊢ ¬ 1
< 0 |
| 6 | | simpll 495 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈
ℝ) |
| 7 | | gt0ap0 7725 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 # 0) |
| 8 | 7 | adantr 270 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 # 0) |
| 9 | 6, 8 | rerecclapd 7919 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℝ) |
| 10 | 9 | renegcld 7484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈
ℝ) |
| 11 | | simpr 108 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0) |
| 12 | | simpl 107 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) |
| 13 | 12, 7 | rerecclapd 7919 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
| 14 | 13 | adantr 270 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℝ) |
| 15 | 14 | lt0neg1d 7616 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 /
𝐴))) |
| 16 | 11, 15 | mpbid 145 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 /
𝐴)) |
| 17 | | simplr 496 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴) |
| 18 | 10, 6, 16, 17 | mulgt0d 7232 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 /
𝐴) · 𝐴)) |
| 19 | 12 | recnd 7147 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
| 20 | 19 | adantr 270 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈
ℂ) |
| 21 | | recclap 7767 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈
ℂ) |
| 22 | 20, 8, 21 | syl2anc 403 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℂ) |
| 23 | 22, 20 | mulneg1d 7515 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)) |
| 24 | | recidap2 7775 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1) |
| 25 | 20, 8, 24 | syl2anc 403 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1) |
| 26 | 25 | negeqd 7303 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1) |
| 27 | 23, 26 | eqtrd 2113 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1) |
| 28 | 18, 27 | breqtrd 3809 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 <
-1) |
| 29 | | 1red 7134 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈
ℝ) |
| 30 | 29 | lt0neg1d 7616 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0
↔ 0 < -1)) |
| 31 | 28, 30 | mpbird 165 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 1 <
0) |
| 32 | 31 | ex 113 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) < 0 → 1 <
0)) |
| 33 | 5, 32 | mtoi 622 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ¬ (1 / 𝐴) < 0) |
| 34 | | lenlt 7187 |
. . . 4
⊢ ((0
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
| 35 | 2, 13, 34 | sylancr 405 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 ≤ (1 /
𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
| 36 | 33, 35 | mpbird 165 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ≤ (1 / 𝐴)) |
| 37 | | recap0 7773 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0) |
| 38 | 19, 7, 37 | syl2anc 403 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) # 0) |
| 39 | 19, 7, 21 | syl2anc 403 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℂ) |
| 40 | | 0cn 7111 |
. . . 4
⊢ 0 ∈
ℂ |
| 41 | | apsym 7706 |
. . . 4
⊢ (((1 /
𝐴) ∈ ℂ ∧ 0
∈ ℂ) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴))) |
| 42 | 39, 40, 41 | sylancl 404 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴))) |
| 43 | 38, 42 | mpbid 145 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 # (1 / 𝐴)) |
| 44 | | ltleap 7730 |
. . 3
⊢ ((0
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴)))) |
| 45 | 2, 13, 44 | sylancr 405 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < (1 /
𝐴) ↔ (0 ≤ (1 /
𝐴) ∧ 0 # (1 / 𝐴)))) |
| 46 | 36, 43, 45 | mpbir2and 885 |
1
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (1 / 𝐴)) |