| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdiv2 | GIF version | ||
| Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| ltdiv2 | ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 964 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℝ) | |
| 2 | gt0ap0 7725 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 # 0) | |
| 3 | 2 | 3ad2ant2 960 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 # 0) |
| 4 | 1, 3 | rerecclapd 7919 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐵) ∈ ℝ) |
| 5 | gt0ap0 7725 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
| 6 | rerecclap 7818 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) | |
| 7 | 5, 6 | syldan 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
| 8 | 7 | 3ad2ant1 959 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (1 / 𝐴) ∈ ℝ) |
| 9 | simp3 940 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) | |
| 10 | ltmul2 7934 | . . 3 ⊢ (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) | |
| 11 | 4, 8, 9, 10 | syl3anc 1169 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
| 12 | ltrec 7961 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) | |
| 13 | 12 | 3adant3 958 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴))) |
| 14 | simp3l 966 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ) | |
| 15 | 14 | recnd 7147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ) |
| 16 | 1 | recnd 7147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ) |
| 17 | 15, 16, 3 | divrecapd 7880 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵))) |
| 18 | simp1l 962 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ) | |
| 19 | 18 | recnd 7147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 ∈ ℂ) |
| 20 | 5 | 3ad2ant1 959 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐴 # 0) |
| 21 | 15, 19, 20 | divrecapd 7880 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴))) |
| 22 | 17, 21 | breq12d 3798 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴)))) |
| 23 | 11, 13, 22 | 3bitr4d 218 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 ∈ wcel 1433 class class class wbr 3785 (class class class)co 5532 ℝcr 6980 0cc0 6981 1c1 6982 · cmul 6986 < clt 7153 # cap 7681 / cdiv 7760 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 |
| This theorem is referenced by: ltdiv2d 8797 |
| Copyright terms: Public domain | W3C validator |