![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 6660 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
2 | opabssxp 4432 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3029 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∈ wcel 1433 ∃wrex 2349 ⊆ wss 2973 {copab 3838 × cxp 4361 ‘cfv 4922 1st c1st 5785 2nd c2nd 5786 Qcnq 6470 Pcnp 6481 <P cltp 6485 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 df-opab 3840 df-xp 4369 df-iltp 6660 |
This theorem is referenced by: ltprordil 6779 ltexprlemm 6790 ltexprlemopl 6791 ltexprlemlol 6792 ltexprlemopu 6793 ltexprlemupu 6794 ltexprlemdisj 6796 ltexprlemloc 6797 ltexprlemfl 6799 ltexprlemrl 6800 ltexprlemfu 6801 ltexprlemru 6802 ltexpri 6803 lteupri 6807 ltaprlem 6808 prplnqu 6810 caucvgprprlemk 6873 caucvgprprlemnkltj 6879 caucvgprprlemnkeqj 6880 caucvgprprlemnjltk 6881 caucvgprprlemnbj 6883 caucvgprprlemml 6884 caucvgprprlemlol 6888 caucvgprprlemupu 6890 gt0srpr 6925 lttrsr 6939 ltposr 6940 archsr 6958 |
Copyright terms: Public domain | W3C validator |