ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpr GIF version

Theorem ltrelpr 6695
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iltp 6660 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
2 opabssxp 4432 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ⊆ (P × P)
31, 2eqsstri 3029 1 <P ⊆ (P × P)
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1433  wrex 2349  wss 2973  {copab 3838   × cxp 4361  cfv 4922  1st c1st 5785  2nd c2nd 5786  Qcnq 6470  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986  df-opab 3840  df-xp 4369  df-iltp 6660
This theorem is referenced by:  ltprordil  6779  ltexprlemm  6790  ltexprlemopl  6791  ltexprlemlol  6792  ltexprlemopu  6793  ltexprlemupu  6794  ltexprlemdisj  6796  ltexprlemloc  6797  ltexprlemfl  6799  ltexprlemrl  6800  ltexprlemfu  6801  ltexprlemru  6802  ltexpri  6803  lteupri  6807  ltaprlem  6808  prplnqu  6810  caucvgprprlemk  6873  caucvgprprlemnkltj  6879  caucvgprprlemnkeqj  6880  caucvgprprlemnjltk  6881  caucvgprprlemnbj  6883  caucvgprprlemml  6884  caucvgprprlemlol  6888  caucvgprprlemupu  6890  gt0srpr  6925  lttrsr  6939  ltposr  6940  archsr  6958
  Copyright terms: Public domain W3C validator