ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltprordil GIF version

Theorem ltprordil 6779
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
Assertion
Ref Expression
ltprordil (𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))

Proof of Theorem ltprordil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6695 . . . 4 <P ⊆ (P × P)
21brel 4410 . . 3 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 6696 . . . 4 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵))))
43biimpd 142 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵))))
52, 4mpcom 36 . 2 (𝐴<P 𝐵 → ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))
6 simpll 495 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝐴<P 𝐵)
7 simpr 108 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
8 simprrl 505 . . . . . . 7 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (2nd𝐴))
98adantr 270 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑥 ∈ (2nd𝐴))
102simpld 110 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
11 prop 6665 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prltlu 6677 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑦 <Q 𝑥)
1412, 13syl3an1 1202 . . . . . 6 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑦 <Q 𝑥)
156, 7, 9, 14syl3anc 1169 . . . . 5 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑥)
16 simprrr 506 . . . . . . 7 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (1st𝐵))
1716adantr 270 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑥 ∈ (1st𝐵))
182simprd 112 . . . . . . . 8 (𝐴<P 𝐵𝐵P)
19 prop 6665 . . . . . . . 8 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2018, 19syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
21 prcdnql 6674 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
2220, 21sylan 277 . . . . . 6 ((𝐴<P 𝐵𝑥 ∈ (1st𝐵)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
236, 17, 22syl2anc 403 . . . . 5 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
2415, 23mpd 13 . . . 4 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐵))
2524ex 113 . . 3 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → (𝑦 ∈ (1st𝐴) → 𝑦 ∈ (1st𝐵)))
2625ssrdv 3005 . 2 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → (1st𝐴) ⊆ (1st𝐵))
275, 26rexlimddv 2481 1 (𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  wrex 2349  wss 2973  cop 3401   class class class wbr 3785  cfv 4922  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltexprlemrl  6800
  Copyright terms: Public domain W3C validator