ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopu GIF version

Theorem ltexprlemopu 6793
Description: The upper cut of our constructed difference is open. Lemma for ltexpri 6803. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopu ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopu
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemelu 6789 . . . 4 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
32simprbi 269 . . 3 (𝑟 ∈ (2nd𝐶) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
4 19.42v 1827 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
5 19.42v 1827 . . . . . . . . 9 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
65anbi2i 444 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
74, 6bitri 182 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))))
8 ltrelpr 6695 . . . . . . . . . . . . . . 15 <P ⊆ (P × P)
98brel 4410 . . . . . . . . . . . . . 14 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 112 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
11 prop 6665 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1210, 11syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prnminu 6679 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1412, 13sylan 277 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1514adantrl 461 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
1615adantrl 461 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q (𝑦 +Q 𝑟))
17 ltdfpr 6696 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
1817biimpd 142 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵))))
199, 18mpcom 36 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
2019ad2antrr 471 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑡Q (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))
219simpld 110 . . . . . . . . . . . . . . . 16 (𝐴<P 𝐵𝐴P)
2221ad2antrr 471 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝐴P)
2322adantr 270 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴P)
24 simplrr 502 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
2524simpld 110 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 ∈ (1st𝐴))
2625adantr 270 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 ∈ (1st𝐴))
27 simprrl 505 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (2nd𝐴))
28 prop 6665 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
29 prltlu 6677 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3028, 29syl3an1 1202 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑦 <Q 𝑡)
3123, 26, 27, 30syl3anc 1169 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑡)
32 simplll 499 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝐴<P 𝐵)
33 simprrr 506 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 ∈ (1st𝐵))
34 simplrl 501 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑠 ∈ (2nd𝐵))
35 prltlu 6677 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3612, 35syl3an1 1202 . . . . . . . . . . . . . 14 ((𝐴<P 𝐵𝑡 ∈ (1st𝐵) ∧ 𝑠 ∈ (2nd𝐵)) → 𝑡 <Q 𝑠)
3732, 33, 34, 36syl3anc 1169 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑡 <Q 𝑠)
38 ltsonq 6588 . . . . . . . . . . . . . 14 <Q Or Q
39 ltrelnq 6555 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4038, 39sotri 4740 . . . . . . . . . . . . 13 ((𝑦 <Q 𝑡𝑡 <Q 𝑠) → 𝑦 <Q 𝑠)
4131, 37, 40syl2anc 403 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑡Q ∧ (𝑡 ∈ (2nd𝐴) ∧ 𝑡 ∈ (1st𝐵)))) → 𝑦 <Q 𝑠)
4220, 41rexlimddv 2481 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦 <Q 𝑠)
43 elprnql 6671 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4428, 43sylan 277 . . . . . . . . . . . . 13 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
4522, 25, 44syl2anc 403 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑦Q)
46 elprnqu 6672 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4712, 46sylan 277 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑠 ∈ (2nd𝐵)) → 𝑠Q)
4847ad2ant2r 492 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑠Q)
49 ltexnqq 6598 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5045, 48, 49syl2anc 403 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (𝑦 <Q 𝑠 ↔ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠))
5142, 50mpbid 145 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑠)
52 simprr 498 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) = 𝑠)
53 simplrr 502 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 <Q (𝑦 +Q 𝑟))
5452, 53eqbrtrd 3805 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
55 simprl 497 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞Q)
56 simplrl 501 . . . . . . . . . . . . . . . 16 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → 𝑟Q)
5756adantr 270 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑟Q)
5845adantr 270 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦Q)
59 ltanqg 6590 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6055, 57, 58, 59syl3anc 1169 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
6154, 60mpbird 165 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑞 <Q 𝑟)
6225adantr 270 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑦 ∈ (1st𝐴))
63 simplrl 501 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → 𝑠 ∈ (2nd𝐵))
6452, 63eqeltrd 2155 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 +Q 𝑞) ∈ (2nd𝐵))
6562, 64jca 300 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))
6661, 55, 65jca32 303 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ (𝑞Q ∧ (𝑦 +Q 𝑞) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
6766expr 367 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) ∧ 𝑞Q) → ((𝑦 +Q 𝑞) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6867reximdva 2463 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → (∃𝑞Q (𝑦 +Q 𝑞) = 𝑠 → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))))
6951, 68mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q (𝑦 +Q 𝑟))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7016, 69rexlimddv 2481 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7170eximi 1531 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑟Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
727, 71sylbir 133 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
73 rexcom4 2622 . . . . . 6 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑦𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7472, 73sylibr 132 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
75 19.42v 1827 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
76 19.42v 1827 . . . . . . . 8 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
7776anbi2i 444 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7875, 77bitri 182 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
7978rexbii 2373 . . . . 5 (∃𝑞Q𝑦(𝑞 <Q 𝑟 ∧ (𝑞Q ∧ (𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8074, 79sylib 120 . . . 4 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
811ltexprlemelu 6789 . . . . . 6 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
8281anbi2i 444 . . . . 5 ((𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8382rexbii 2373 . . . 4 (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) ↔ ∃𝑞Q (𝑞 <Q 𝑟 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
8480, 83sylibr 132 . . 3 ((𝐴<P 𝐵 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
853, 84sylanr2 397 . 2 ((𝐴<P 𝐵 ∧ (𝑟Q𝑟 ∈ (2nd𝐶))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
86853impb 1134 1 ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wex 1421  wcel 1433  wrex 2349  {crab 2352  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   +Q cplq 6472   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltexprlemrnd  6795
  Copyright terms: Public domain W3C validator