ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archsr GIF version

Theorem archsr 6958
Description: For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
Assertion
Ref Expression
archsr (𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
Distinct variable group:   𝐴,𝑙,𝑢,𝑥

Proof of Theorem archsr
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6904 . 2 R = ((P × P) / ~R )
2 breq1 3788 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐴 → ([⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
32rexbidv 2369 . 2 ([⟨𝑧, 𝑤⟩] ~R = 𝐴 → (∃𝑥N [⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
4 1pr 6744 . . . . . . 7 1PP
5 addclpr 6727 . . . . . . 7 ((𝑧P ∧ 1PP) → (𝑧 +P 1P) ∈ P)
64, 5mpan2 415 . . . . . 6 (𝑧P → (𝑧 +P 1P) ∈ P)
7 archpr 6833 . . . . . 6 ((𝑧 +P 1P) ∈ P → ∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩)
86, 7syl 14 . . . . 5 (𝑧P → ∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩)
98adantr 270 . . . 4 ((𝑧P𝑤P) → ∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩)
10 nnprlu 6743 . . . . . . . . . 10 (𝑥N → ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
1110adantl 271 . . . . . . . . 9 (((𝑧P𝑤P) ∧ 𝑥N) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
12 addclpr 6727 . . . . . . . . 9 ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
1311, 4, 12sylancl 404 . . . . . . . 8 (((𝑧P𝑤P) ∧ 𝑥N) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P)
14 simplr 496 . . . . . . . 8 (((𝑧P𝑤P) ∧ 𝑥N) → 𝑤P)
15 ltaddpr 6787 . . . . . . . 8 (((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P𝑤P) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)<P ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
1613, 14, 15syl2anc 403 . . . . . . 7 (((𝑧P𝑤P) ∧ 𝑥N) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)<P ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
17 addcomprg 6768 . . . . . . . 8 ((𝑤P ∧ (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P) → (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)) = ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
1814, 13, 17syl2anc 403 . . . . . . 7 (((𝑧P𝑤P) ∧ 𝑥N) → (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)) = ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) +P 𝑤))
1916, 18breqtrrd 3811 . . . . . 6 (((𝑧P𝑤P) ∧ 𝑥N) → (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)))
20 ltaddpr 6787 . . . . . . . 8 ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P ∧ 1PP) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
2111, 4, 20sylancl 404 . . . . . . 7 (((𝑧P𝑤P) ∧ 𝑥N) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
22 ltsopr 6786 . . . . . . . . 9 <P Or P
23 ltrelpr 6695 . . . . . . . . 9 <P ⊆ (P × P)
2422, 23sotri 4740 . . . . . . . 8 (((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∧ ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)) → (𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))
2524expcom 114 . . . . . . 7 (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) → ((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ → (𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)))
2621, 25syl 14 . . . . . 6 (((𝑧P𝑤P) ∧ 𝑥N) → ((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ → (𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)))
2722, 23sotri 4740 . . . . . . 7 (((𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∧ (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))) → (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)))
2827expcom 114 . . . . . 6 ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)) → ((𝑧 +P 1P)<P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) → (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))))
2919, 26, 28sylsyld 57 . . . . 5 (((𝑧P𝑤P) ∧ 𝑥N) → ((𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ → (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3029reximdva 2463 . . . 4 ((𝑧P𝑤P) → (∃𝑥N (𝑧 +P 1P)<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ → ∃𝑥N (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))))
319, 30mpd 13 . . 3 ((𝑧P𝑤P) → ∃𝑥N (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P)))
32 simpl 107 . . . . 5 (((𝑧P𝑤P) ∧ 𝑥N) → (𝑧P𝑤P))
334a1i 9 . . . . 5 (((𝑧P𝑤P) ∧ 𝑥N) → 1PP)
34 ltsrprg 6924 . . . . 5 (((𝑧P𝑤P) ∧ ((⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3532, 13, 33, 34syl12anc 1167 . . . 4 (((𝑧P𝑤P) ∧ 𝑥N) → ([⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3635rexbidva 2365 . . 3 ((𝑧P𝑤P) → (∃𝑥N [⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ↔ ∃𝑥N (𝑧 +P 1P)<P (𝑤 +P (⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P))))
3731, 36mpbird 165 . 2 ((𝑧P𝑤P) → ∃𝑥N [⟨𝑧, 𝑤⟩] ~R <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
381, 3, 37ecoptocl 6216 1 (𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {cab 2067  wrex 2349  cop 3401   class class class wbr 3785  (class class class)co 5532  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   ~Q ceq 6469   <Q cltq 6475  Pcnp 6481  1Pc1p 6482   +P cpp 6483  <P cltp 6485   ~R cer 6486  Rcnr 6487   <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-iltp 6660  df-enr 6903  df-nr 6904  df-ltr 6907
This theorem is referenced by:  axarch  7057
  Copyright terms: Public domain W3C validator