ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnr GIF version

Theorem mulcmpblnr 6918
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
Assertion
Ref Expression
mulcmpblnr ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))

Proof of Theorem mulcmpblnr
StepHypRef Expression
1 mulcmpblnrlemg 6917 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))))
2 simplrr 502 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐷P)
3 simprll 503 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐹P)
4 mulclpr 6762 . . . . 5 ((𝐷P𝐹P) → (𝐷 ·P 𝐹) ∈ P)
52, 3, 4syl2anc 403 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝐹) ∈ P)
6 simplll 499 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐴P)
7 mulclpr 6762 . . . . . . 7 ((𝐴P𝐹P) → (𝐴 ·P 𝐹) ∈ P)
86, 3, 7syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐹) ∈ P)
9 simpllr 500 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐵P)
10 simprlr 504 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐺P)
11 mulclpr 6762 . . . . . . 7 ((𝐵P𝐺P) → (𝐵 ·P 𝐺) ∈ P)
129, 10, 11syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐺) ∈ P)
13 addclpr 6727 . . . . . 6 (((𝐴 ·P 𝐹) ∈ P ∧ (𝐵 ·P 𝐺) ∈ P) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
148, 12, 13syl2anc 403 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P)
15 simplrl 501 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝐶P)
16 simprrr 506 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑆P)
17 mulclpr 6762 . . . . . . 7 ((𝐶P𝑆P) → (𝐶 ·P 𝑆) ∈ P)
1815, 16, 17syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑆) ∈ P)
19 simprrl 505 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → 𝑅P)
20 mulclpr 6762 . . . . . . 7 ((𝐷P𝑅P) → (𝐷 ·P 𝑅) ∈ P)
212, 19, 20syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑅) ∈ P)
22 addclpr 6727 . . . . . 6 (((𝐶 ·P 𝑆) ∈ P ∧ (𝐷 ·P 𝑅) ∈ P) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
2318, 21, 22syl2anc 403 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)
24 addclpr 6727 . . . . 5 ((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
2514, 23, 24syl2anc 403 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P)
26 mulclpr 6762 . . . . . . 7 ((𝐴P𝐺P) → (𝐴 ·P 𝐺) ∈ P)
276, 10, 26syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐴 ·P 𝐺) ∈ P)
28 mulclpr 6762 . . . . . . 7 ((𝐵P𝐹P) → (𝐵 ·P 𝐹) ∈ P)
299, 3, 28syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐵 ·P 𝐹) ∈ P)
30 addclpr 6727 . . . . . 6 (((𝐴 ·P 𝐺) ∈ P ∧ (𝐵 ·P 𝐹) ∈ P) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
3127, 29, 30syl2anc 403 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P)
32 mulclpr 6762 . . . . . . 7 ((𝐶P𝑅P) → (𝐶 ·P 𝑅) ∈ P)
3315, 19, 32syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐶 ·P 𝑅) ∈ P)
34 mulclpr 6762 . . . . . . 7 ((𝐷P𝑆P) → (𝐷 ·P 𝑆) ∈ P)
352, 16, 34syl2anc 403 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (𝐷 ·P 𝑆) ∈ P)
36 addclpr 6727 . . . . . 6 (((𝐶 ·P 𝑅) ∈ P ∧ (𝐷 ·P 𝑆) ∈ P) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
3733, 35, 36syl2anc 403 . . . . 5 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P)
38 addclpr 6727 . . . . 5 ((((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P ∧ ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P) → (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))) ∈ P)
3931, 37, 38syl2anc 403 . . . 4 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))) ∈ P)
40 addcanprg 6806 . . . 4 (((𝐷 ·P 𝐹) ∈ P ∧ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) ∈ P ∧ (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))) ∈ P) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
415, 25, 39, 40syl3anc 1169 . . 3 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
421, 41syld 44 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
43 enrbreq 6911 . . 3 (((((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) ∈ P ∧ ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) ∈ P) ∧ (((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)) ∈ P ∧ ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)) ∈ P)) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4414, 31, 37, 23, 43syl22anc 1170 . 2 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩ ↔ (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
4542, 44sylibrd 167 1 ((((𝐴P𝐵P) ∧ (𝐶P𝐷P)) ∧ ((𝐹P𝐺P) ∧ (𝑅P𝑆P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ⟨((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))⟩ ~R ⟨((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  cop 3401   class class class wbr 3785  (class class class)co 5532  Pcnp 6481   +P cpp 6483   ·P cmp 6484   ~R cer 6486
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-imp 6659  df-enr 6903
This theorem is referenced by:  mulsrmo  6921
  Copyright terms: Public domain W3C validator