ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprg GIF version

Theorem addcanprg 6806
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
Assertion
Ref Expression
addcanprg ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))

Proof of Theorem addcanprg
StepHypRef Expression
1 addcanprleml 6804 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
2 3ancomb 927 . . . . . . 7 ((𝐴P𝐵P𝐶P) ↔ (𝐴P𝐶P𝐵P))
3 eqcom 2083 . . . . . . 7 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ (𝐴 +P 𝐶) = (𝐴 +P 𝐵))
42, 3anbi12i 447 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ↔ ((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)))
5 addcanprleml 6804 . . . . . 6 (((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (1st𝐶) ⊆ (1st𝐵))
64, 5sylbi 119 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐶) ⊆ (1st𝐵))
71, 6eqssd 3016 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) = (1st𝐶))
8 addcanprlemu 6805 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
9 addcanprlemu 6805 . . . . . 6 (((𝐴P𝐶P𝐵P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (2nd𝐶) ⊆ (2nd𝐵))
104, 9sylbi 119 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐶) ⊆ (2nd𝐵))
118, 10eqssd 3016 . . . 4 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) = (2nd𝐶))
127, 11jca 300 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶)))
13 preqlu 6662 . . . . 5 ((𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
14133adant1 956 . . . 4 ((𝐴P𝐵P𝐶P) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
1514adantr 270 . . 3 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐵 = 𝐶 ↔ ((1st𝐵) = (1st𝐶) ∧ (2nd𝐵) = (2nd𝐶))))
1612, 15mpbird 165 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → 𝐵 = 𝐶)
1716ex 113 1 ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  wss 2973  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Pcnp 6481   +P cpp 6483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658
This theorem is referenced by:  lteupri  6807  ltaprg  6809  enrer  6912  mulcmpblnr  6918  mulgt0sr  6954  srpospr  6959
  Copyright terms: Public domain W3C validator