ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqpru GIF version

Theorem mulnqpru 6759
Description: Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqpru ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))

Proof of Theorem mulnqpru
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6591 . . . . . . 7 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
21adantl 271 . . . . . 6 (((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
3 prop 6665 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 elprnqu 6672 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
53, 4sylan 277 . . . . . . . 8 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
65ad2antrr 471 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐺Q)
7 prop 6665 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
8 elprnqu 6672 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
97, 8sylan 277 . . . . . . . 8 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
109ad2antlr 472 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐻Q)
11 mulclnq 6566 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 ·Q 𝐻) ∈ Q)
126, 10, 11syl2anc 403 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 𝐻) ∈ Q)
13 simpr 108 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝑋Q)
14 recclnq 6582 . . . . . . 7 (𝐻Q → (*Q𝐻) ∈ Q)
1510, 14syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (*Q𝐻) ∈ Q)
16 mulcomnqg 6573 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
1716adantl 271 . . . . . 6 (((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
182, 12, 13, 15, 17caovord2d 5690 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 ↔ ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻))))
19 mulassnqg 6574 . . . . . . . 8 ((𝐺Q𝐻Q ∧ (*Q𝐻) ∈ Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
206, 10, 15, 19syl3anc 1169 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
21 recidnq 6583 . . . . . . . . 9 (𝐻Q → (𝐻 ·Q (*Q𝐻)) = 1Q)
2221oveq2d 5548 . . . . . . . 8 (𝐻Q → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
2310, 22syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
24 mulidnq 6579 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
256, 24syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 1Q) = 𝐺)
2620, 23, 253eqtrd 2117 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = 𝐺)
2726breq1d 3795 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻)) ↔ 𝐺 <Q (𝑋 ·Q (*Q𝐻))))
2818, 27bitrd 186 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝐺 <Q (𝑋 ·Q (*Q𝐻))))
29 prcunqu 6675 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
303, 29sylan 277 . . . . 5 ((𝐴P𝐺 ∈ (2nd𝐴)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
3130ad2antrr 471 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
3228, 31sylbid 148 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
33 df-imp 6659 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}⟩)
34 mulclnq 6566 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3533, 34genppreclu 6705 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) ∧ 𝐻 ∈ (2nd𝐵)) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
3635exp4b 359 . . . . . . 7 (𝐴P → (𝐵P → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → (𝐻 ∈ (2nd𝐵) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))))
3736com34 82 . . . . . 6 (𝐴P → (𝐵P → (𝐻 ∈ (2nd𝐵) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))))
3837imp32 253 . . . . 5 ((𝐴P ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
3938adantlr 460 . . . 4 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4039adantr 270 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4132, 40syld 44 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
42 mulassnqg 6574 . . . . 5 ((𝑋Q ∧ (*Q𝐻) ∈ Q𝐻Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
4313, 15, 10, 42syl3anc 1169 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
44 mulcomnqg 6573 . . . . . . 7 (((*Q𝐻) ∈ Q𝐻Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4515, 10, 44syl2anc 403 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4610, 21syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐻 ·Q (*Q𝐻)) = 1Q)
4745, 46eqtrd 2113 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = 1Q)
4847oveq2d 5548 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)) = (𝑋 ·Q 1Q))
49 mulidnq 6579 . . . . 5 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
5049adantl 271 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
5143, 48, 503eqtrd 2117 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = 𝑋)
5251eleq1d 2147 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ 𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5341, 52sylibd 147 1 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470  1Qc1q 6471   ·Q cmq 6473  *Qcrq 6474   <Q cltq 6475  Pcnp 6481   ·P cmp 6484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-inp 6656  df-imp 6659
This theorem is referenced by:  mullocprlem  6760  mulclpr  6762
  Copyright terms: Public domain W3C validator