ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nna0r GIF version

Theorem nna0r 6080
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nna0r (𝐴 ∈ ω → (∅ +𝑜 𝐴) = 𝐴)

Proof of Theorem nna0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . 3 (𝑥 = ∅ → (∅ +𝑜 𝑥) = (∅ +𝑜 ∅))
2 id 19 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2095 . 2 (𝑥 = ∅ → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 ∅) = ∅))
4 oveq2 5540 . . 3 (𝑥 = 𝑦 → (∅ +𝑜 𝑥) = (∅ +𝑜 𝑦))
5 id 19 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2095 . 2 (𝑥 = 𝑦 → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 𝑦) = 𝑦))
7 oveq2 5540 . . 3 (𝑥 = suc 𝑦 → (∅ +𝑜 𝑥) = (∅ +𝑜 suc 𝑦))
8 id 19 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2095 . 2 (𝑥 = suc 𝑦 → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 suc 𝑦) = suc 𝑦))
10 oveq2 5540 . . 3 (𝑥 = 𝐴 → (∅ +𝑜 𝑥) = (∅ +𝑜 𝐴))
11 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2095 . 2 (𝑥 = 𝐴 → ((∅ +𝑜 𝑥) = 𝑥 ↔ (∅ +𝑜 𝐴) = 𝐴))
13 0elon 4147 . . 3 ∅ ∈ On
14 oa0 6060 . . 3 (∅ ∈ On → (∅ +𝑜 ∅) = ∅)
1513, 14ax-mp 7 . 2 (∅ +𝑜 ∅) = ∅
16 peano1 4335 . . . 4 ∅ ∈ ω
17 nnasuc 6078 . . . 4 ((∅ ∈ ω ∧ 𝑦 ∈ ω) → (∅ +𝑜 suc 𝑦) = suc (∅ +𝑜 𝑦))
1816, 17mpan 414 . . 3 (𝑦 ∈ ω → (∅ +𝑜 suc 𝑦) = suc (∅ +𝑜 𝑦))
19 suceq 4157 . . . 4 ((∅ +𝑜 𝑦) = 𝑦 → suc (∅ +𝑜 𝑦) = suc 𝑦)
2019eqeq2d 2092 . . 3 ((∅ +𝑜 𝑦) = 𝑦 → ((∅ +𝑜 suc 𝑦) = suc (∅ +𝑜 𝑦) ↔ (∅ +𝑜 suc 𝑦) = suc 𝑦))
2118, 20syl5ibcom 153 . 2 (𝑦 ∈ ω → ((∅ +𝑜 𝑦) = 𝑦 → (∅ +𝑜 suc 𝑦) = suc 𝑦))
223, 6, 9, 12, 15, 21finds 4341 1 (𝐴 ∈ ω → (∅ +𝑜 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  c0 3251  Oncon0 4118  suc csuc 4120  ωcom 4331  (class class class)co 5532   +𝑜 coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028
This theorem is referenced by:  nnacom  6086  nnaword  6107  nnm1  6120  prarloclem5  6690
  Copyright terms: Public domain W3C validator