ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword GIF version

Theorem nnaword 6107
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))

Proof of Theorem nnaword
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5539 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +𝑜 𝐴) = (𝐶 +𝑜 𝐴))
2 oveq1 5539 . . . . . . 7 (𝑥 = 𝐶 → (𝑥 +𝑜 𝐵) = (𝐶 +𝑜 𝐵))
31, 2sseq12d 3028 . . . . . 6 (𝑥 = 𝐶 → ((𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵) ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
43bibi2d 230 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 ↔ (𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵)) ↔ (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵))))
54imbi2d 228 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
6 oveq1 5539 . . . . . . 7 (𝑥 = ∅ → (𝑥 +𝑜 𝐴) = (∅ +𝑜 𝐴))
7 oveq1 5539 . . . . . . 7 (𝑥 = ∅ → (𝑥 +𝑜 𝐵) = (∅ +𝑜 𝐵))
86, 7sseq12d 3028 . . . . . 6 (𝑥 = ∅ → ((𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵) ↔ (∅ +𝑜 𝐴) ⊆ (∅ +𝑜 𝐵)))
98bibi2d 230 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 ↔ (𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵)) ↔ (𝐴𝐵 ↔ (∅ +𝑜 𝐴) ⊆ (∅ +𝑜 𝐵))))
10 oveq1 5539 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +𝑜 𝐴) = (𝑦 +𝑜 𝐴))
11 oveq1 5539 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 +𝑜 𝐵) = (𝑦 +𝑜 𝐵))
1210, 11sseq12d 3028 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵) ↔ (𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵)))
1312bibi2d 230 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 ↔ (𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵)) ↔ (𝐴𝐵 ↔ (𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵))))
14 oveq1 5539 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +𝑜 𝐴) = (suc 𝑦 +𝑜 𝐴))
15 oveq1 5539 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑥 +𝑜 𝐵) = (suc 𝑦 +𝑜 𝐵))
1614, 15sseq12d 3028 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵) ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵)))
1716bibi2d 230 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 ↔ (𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵))))
18 nna0r 6080 . . . . . . . 8 (𝐴 ∈ ω → (∅ +𝑜 𝐴) = 𝐴)
1918eqcomd 2086 . . . . . . 7 (𝐴 ∈ ω → 𝐴 = (∅ +𝑜 𝐴))
2019adantr 270 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 = (∅ +𝑜 𝐴))
21 nna0r 6080 . . . . . . . 8 (𝐵 ∈ ω → (∅ +𝑜 𝐵) = 𝐵)
2221eqcomd 2086 . . . . . . 7 (𝐵 ∈ ω → 𝐵 = (∅ +𝑜 𝐵))
2322adantl 271 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 = (∅ +𝑜 𝐵))
2420, 23sseq12d 3028 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (∅ +𝑜 𝐴) ⊆ (∅ +𝑜 𝐵)))
25 nnacl 6082 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +𝑜 𝐴) ∈ ω)
26253adant3 958 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +𝑜 𝐴) ∈ ω)
27 nnacl 6082 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +𝑜 𝐵) ∈ ω)
28273adant2 957 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝑦 +𝑜 𝐵) ∈ ω)
29 nnsucsssuc 6094 . . . . . . . . . 10 (((𝑦 +𝑜 𝐴) ∈ ω ∧ (𝑦 +𝑜 𝐵) ∈ ω) → ((𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵) ↔ suc (𝑦 +𝑜 𝐴) ⊆ suc (𝑦 +𝑜 𝐵)))
3026, 28, 29syl2anc 403 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵) ↔ suc (𝑦 +𝑜 𝐴) ⊆ suc (𝑦 +𝑜 𝐵)))
31 nnasuc 6078 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
32 peano2 4336 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
33 nnacom 6086 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = (suc 𝑦 +𝑜 𝐴))
3432, 33sylan2 280 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = (suc 𝑦 +𝑜 𝐴))
35 nnacom 6086 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴))
36 suceq 4157 . . . . . . . . . . . . . 14 ((𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
3735, 36syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
3831, 34, 373eqtr3rd 2122 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +𝑜 𝐴) = (suc 𝑦 +𝑜 𝐴))
3938ancoms 264 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → suc (𝑦 +𝑜 𝐴) = (suc 𝑦 +𝑜 𝐴))
40393adant3 958 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +𝑜 𝐴) = (suc 𝑦 +𝑜 𝐴))
41 nnasuc 6078 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
42 nnacom 6086 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ suc 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = (suc 𝑦 +𝑜 𝐵))
4332, 42sylan2 280 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = (suc 𝑦 +𝑜 𝐵))
44 nnacom 6086 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 𝑦) = (𝑦 +𝑜 𝐵))
45 suceq 4157 . . . . . . . . . . . . . 14 ((𝐵 +𝑜 𝑦) = (𝑦 +𝑜 𝐵) → suc (𝐵 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐵))
4644, 45syl 14 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐵 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐵))
4741, 43, 463eqtr3rd 2122 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝑦 +𝑜 𝐵) = (suc 𝑦 +𝑜 𝐵))
4847ancoms 264 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +𝑜 𝐵) = (suc 𝑦 +𝑜 𝐵))
49483adant2 957 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc (𝑦 +𝑜 𝐵) = (suc 𝑦 +𝑜 𝐵))
5040, 49sseq12d 3028 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (𝑦 +𝑜 𝐴) ⊆ suc (𝑦 +𝑜 𝐵) ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵)))
5130, 50bitrd 186 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵) ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵)))
5251bibi2d 230 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵)) ↔ (𝐴𝐵 ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵))))
5352biimpd 142 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵))))
54533expib 1141 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ↔ (𝑦 +𝑜 𝐴) ⊆ (𝑦 +𝑜 𝐵)) → (𝐴𝐵 ↔ (suc 𝑦 +𝑜 𝐴) ⊆ (suc 𝑦 +𝑜 𝐵)))))
559, 13, 17, 24, 54finds2 4342 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝑥 +𝑜 𝐴) ⊆ (𝑥 +𝑜 𝐵))))
565, 55vtoclga 2664 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵))))
5756impcom 123 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
58573impa 1133 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  wss 2973  c0 3251  suc csuc 4120  ωcom 4331  (class class class)co 5532   +𝑜 coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028
This theorem is referenced by:  nnacan  6108  nnawordi  6111
  Copyright terms: Public domain W3C validator