| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numsucc | GIF version | ||
| Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numsucc.1 | ⊢ 𝑌 ∈ ℕ0 |
| numsucc.2 | ⊢ 𝑇 = (𝑌 + 1) |
| numsucc.3 | ⊢ 𝐴 ∈ ℕ0 |
| numsucc.4 | ⊢ (𝐴 + 1) = 𝐵 |
| numsucc.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) |
| Ref | Expression |
|---|---|
| numsucc | ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numsucc.2 | . . . . . . 7 ⊢ 𝑇 = (𝑌 + 1) | |
| 2 | numsucc.1 | . . . . . . . 8 ⊢ 𝑌 ∈ ℕ0 | |
| 3 | 1nn0 8304 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 4 | 2, 3 | nn0addcli 8325 | . . . . . . 7 ⊢ (𝑌 + 1) ∈ ℕ0 |
| 5 | 1, 4 | eqeltri 2151 | . . . . . 6 ⊢ 𝑇 ∈ ℕ0 |
| 6 | 5 | nn0cni 8300 | . . . . 5 ⊢ 𝑇 ∈ ℂ |
| 7 | 6 | mulid1i 7121 | . . . 4 ⊢ (𝑇 · 1) = 𝑇 |
| 8 | 7 | oveq2i 5543 | . . 3 ⊢ ((𝑇 · 𝐴) + (𝑇 · 1)) = ((𝑇 · 𝐴) + 𝑇) |
| 9 | numsucc.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 10 | 9 | nn0cni 8300 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 11 | ax-1cn 7069 | . . . 4 ⊢ 1 ∈ ℂ | |
| 12 | 6, 10, 11 | adddii 7129 | . . 3 ⊢ (𝑇 · (𝐴 + 1)) = ((𝑇 · 𝐴) + (𝑇 · 1)) |
| 13 | 1 | eqcomi 2085 | . . . 4 ⊢ (𝑌 + 1) = 𝑇 |
| 14 | numsucc.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) | |
| 15 | 5, 9, 2, 13, 14 | numsuc 8490 | . . 3 ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝑇) |
| 16 | 8, 12, 15 | 3eqtr4ri 2112 | . 2 ⊢ (𝑁 + 1) = (𝑇 · (𝐴 + 1)) |
| 17 | numsucc.4 | . . 3 ⊢ (𝐴 + 1) = 𝐵 | |
| 18 | 17 | oveq2i 5543 | . 2 ⊢ (𝑇 · (𝐴 + 1)) = (𝑇 · 𝐵) |
| 19 | 9, 3 | nn0addcli 8325 | . . . 4 ⊢ (𝐴 + 1) ∈ ℕ0 |
| 20 | 17, 19 | eqeltrri 2152 | . . 3 ⊢ 𝐵 ∈ ℕ0 |
| 21 | 5, 20 | num0u 8487 | . 2 ⊢ (𝑇 · 𝐵) = ((𝑇 · 𝐵) + 0) |
| 22 | 16, 18, 21 | 3eqtri 2105 | 1 ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ∈ wcel 1433 (class class class)co 5532 0cc0 6981 1c1 6982 + caddc 6984 · cmul 6986 ℕ0cn0 8288 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-sub 7281 df-inn 8040 df-n0 8289 |
| This theorem is referenced by: decsucc 8517 |
| Copyright terms: Public domain | W3C validator |