ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omcl GIF version

Theorem omcl 6064
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Constructive proof by Jim Kingdon, 26-Jul-2019.)
Assertion
Ref Expression
omcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)

Proof of Theorem omcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omv 6058 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵))
2 omfnex 6052 . . 3 (𝐴 ∈ On → (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)) Fn V)
3 0elon 4147 . . . 4 ∅ ∈ On
43a1i 9 . . 3 (𝐴 ∈ On → ∅ ∈ On)
5 vex 2604 . . . . . . 7 𝑦 ∈ V
6 oacl 6063 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 +𝑜 𝐴) ∈ On)
7 oveq1 5539 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 +𝑜 𝐴) = (𝑦 +𝑜 𝐴))
8 eqid 2081 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))
97, 8fvmptg 5269 . . . . . . 7 ((𝑦 ∈ V ∧ (𝑦 +𝑜 𝐴) ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘𝑦) = (𝑦 +𝑜 𝐴))
105, 6, 9sylancr 405 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘𝑦) = (𝑦 +𝑜 𝐴))
1110, 6eqeltrd 2155 . . . . 5 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘𝑦) ∈ On)
1211ancoms 264 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘𝑦) ∈ On)
1312ralrimiva 2434 . . 3 (𝐴 ∈ On → ∀𝑦 ∈ On ((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴))‘𝑦) ∈ On)
142, 4, 13rdgon 5996 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +𝑜 𝐴)), ∅)‘𝐵) ∈ On)
151, 14eqeltrd 2155 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  Vcvv 2601  c0 3251  cmpt 3839  Oncon0 4118  cfv 4922  (class class class)co 5532  reccrdg 5979   +𝑜 coa 6021   ·𝑜 comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  oeicl  6065  omv2  6068  omsuc  6074
  Copyright terms: Public domain W3C validator