ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssnqu GIF version

Theorem prssnqu 6670
Description: The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
Assertion
Ref Expression
prssnqu (⟨𝐿, 𝑈⟩ ∈ P𝑈Q)

Proof of Theorem prssnqu
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinp 6664 . 2 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))))
2 simpllr 500 . 2 ((((𝐿Q𝑈Q) ∧ (∃𝑥Q 𝑥𝐿 ∧ ∃𝑦Q 𝑦𝑈)) ∧ ((∀𝑥Q (𝑥𝐿 ↔ ∃𝑦Q (𝑥 <Q 𝑦𝑦𝐿)) ∧ ∀𝑦Q (𝑦𝑈 ↔ ∃𝑥Q (𝑥 <Q 𝑦𝑥𝑈))) ∧ ∀𝑥Q ¬ (𝑥𝐿𝑥𝑈) ∧ ∀𝑥Q𝑦Q (𝑥 <Q 𝑦 → (𝑥𝐿𝑦𝑈)))) → 𝑈Q)
31, 2sylbi 119 1 (⟨𝐿, 𝑈⟩ ∈ P𝑈Q)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919  wcel 1433  wral 2348  wrex 2349  wss 2973  cop 3401   class class class wbr 3785  Qcnq 6470   <Q cltq 6475  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656
This theorem is referenced by:  elprnqu  6672
  Copyright terms: Public domain W3C validator