ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioc0 GIF version

Theorem ioc0 9271
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ioc0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))

Proof of Theorem ioc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iocval 8941 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)})
21eqeq1d 2089 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅))
3 xrltletr 8877 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
433com23 1144 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
543expa 1138 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
65rexlimdva 2477 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵) → 𝐴 < 𝐵))
7 qbtwnxr 9266 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
8 qre 8710 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
98rexrd 7168 . . . . . . . . . . 11 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*)
109a1i 9 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*))
11 xrltle 8873 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 < 𝐵𝑥𝐵))
12113ad2antr2 1104 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → (𝑥 < 𝐵𝑥𝐵))
1312anim2d 330 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝐴 < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥𝐵)))
1410, 13anim12d 328 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵)) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵))))
1514ex 113 . . . . . . . . . . 11 (𝑥 ∈ ℝ* → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵)))))
169, 15syl 14 . . . . . . . . . 10 (𝑥 ∈ ℚ → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵)))))
1716adantr 270 . . . . . . . . 9 ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵)))))
1817pm2.43b 51 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥𝐵))))
1918reximdv2 2460 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵)))
207, 19mpd 13 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵))
21203expia 1140 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵)))
226, 21impbid 127 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵) ↔ 𝐴 < 𝐵))
2322notbid 624 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵) ↔ ¬ 𝐴 < 𝐵))
24 rabeq0 3274 . . . . 5 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥𝐵))
25 ralnex 2358 . . . . 5 (∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥𝐵) ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵))
2624, 25bitri 182 . . . 4 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵))
2726a1i 9 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ ¬ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥𝑥𝐵)))
28 xrlenlt 7177 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2928ancoms 264 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
3023, 27, 293bitr4d 218 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)} = ∅ ↔ 𝐵𝐴))
312, 30bitrd 186 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,]𝐵) = ∅ ↔ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  wral 2348  wrex 2349  {crab 2352  c0 3251   class class class wbr 3785  (class class class)co 5532  *cxr 7152   < clt 7153  cle 7154  cq 8704  (,]cioc 8912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-ioc 8916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator