![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgisucinc | GIF version |
Description: Value of the recursive
definition generator at a successor.
This can be thought of as a generalization of oasuc 6067 and omsuc 6074. (Contributed by Jim Kingdon, 29-Aug-2019.) |
Ref | Expression |
---|---|
rdgisuc1.1 | ⊢ (𝜑 → 𝐹 Fn V) |
rdgisuc1.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rdgisuc1.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
rdgisucinc.inc | ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) |
Ref | Expression |
---|---|
rdgisucinc | ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgisuc1.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn V) | |
2 | rdgisuc1.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rdgisuc1.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | 1, 2, 3 | rdgisuc1 5994 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))) |
5 | unass 3129 | . . 3 ⊢ ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ (∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) | |
6 | 4, 5 | syl6eqr 2131 | . 2 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
7 | rdgival 5992 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) | |
8 | 1, 2, 3, 7 | syl3anc 1169 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
9 | 8 | uneq1d 3125 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
10 | rdgexggg 5987 | . . . . 5 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) | |
11 | 1, 2, 3, 10 | syl3anc 1169 | . . . 4 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
12 | rdgisucinc.inc | . . . 4 ⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) | |
13 | id 19 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵)) | |
14 | fveq2 5198 | . . . . . 6 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹‘𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
15 | 13, 14 | sseq12d 3028 | . . . . 5 ⊢ (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹‘𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
16 | 15 | spcgv 2685 | . . . 4 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹‘𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))) |
17 | 11, 12, 16 | sylc 61 | . . 3 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
18 | ssequn1 3142 | . . 3 ⊢ ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) | |
19 | 17, 18 | sylib 120 | . 2 ⊢ (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
20 | 6, 9, 19 | 3eqtr2d 2119 | 1 ⊢ (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∪ cun 2971 ⊆ wss 2973 ∪ ciun 3678 Oncon0 4118 suc csuc 4120 Fn wfn 4917 ‘cfv 4922 reccrdg 5979 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-recs 5943 df-irdg 5980 |
This theorem is referenced by: frecrdg 6015 |
Copyright terms: Public domain | W3C validator |