![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recexprlemlol | GIF version |
Description: The lower cut of 𝐵 is lower. Lemma for recexpr 6828. (Contributed by Jim Kingdon, 28-Dec-2019.) |
Ref | Expression |
---|---|
recexpr.1 | ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
Ref | Expression |
---|---|
recexprlemlol | ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)) → 𝑞 ∈ (1st ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsonq 6588 | . . . . . . . . 9 ⊢ <Q Or Q | |
2 | ltrelnq 6555 | . . . . . . . . 9 ⊢ <Q ⊆ (Q × Q) | |
3 | 1, 2 | sotri 4740 | . . . . . . . 8 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 <Q 𝑦) → 𝑞 <Q 𝑦) |
4 | 3 | ex 113 | . . . . . . 7 ⊢ (𝑞 <Q 𝑟 → (𝑟 <Q 𝑦 → 𝑞 <Q 𝑦)) |
5 | 4 | anim1d 329 | . . . . . 6 ⊢ (𝑞 <Q 𝑟 → ((𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
6 | 5 | eximdv 1801 | . . . . 5 ⊢ (𝑞 <Q 𝑟 → (∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
7 | recexpr.1 | . . . . . 6 ⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | |
8 | 7 | recexprlemell 6812 | . . . . 5 ⊢ (𝑟 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑟 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) |
9 | 7 | recexprlemell 6812 | . . . . 5 ⊢ (𝑞 ∈ (1st ‘𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q‘𝑦) ∈ (2nd ‘𝐴))) |
10 | 6, 8, 9 | 3imtr4g 203 | . . . 4 ⊢ (𝑞 <Q 𝑟 → (𝑟 ∈ (1st ‘𝐵) → 𝑞 ∈ (1st ‘𝐵))) |
11 | 10 | imp 122 | . . 3 ⊢ ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)) → 𝑞 ∈ (1st ‘𝐵)) |
12 | 11 | rexlimivw 2473 | . 2 ⊢ (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)) → 𝑞 ∈ (1st ‘𝐵)) |
13 | 12 | a1i 9 | 1 ⊢ ((𝐴 ∈ P ∧ 𝑞 ∈ Q) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐵)) → 𝑞 ∈ (1st ‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 {cab 2067 ∃wrex 2349 〈cop 3401 class class class wbr 3785 ‘cfv 4922 1st c1st 5785 2nd c2nd 5786 Qcnq 6470 *Qcrq 6474 <Q cltq 6475 Pcnp 6481 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-lti 6497 df-enq 6537 df-nqqs 6538 df-ltnqqs 6543 |
This theorem is referenced by: recexprlemrnd 6819 |
Copyright terms: Public domain | W3C validator |