Proof of Theorem rereim
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 495 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 ∈ ℝ) |
| 2 | 1 | recnd 7147 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 ∈ ℂ) |
| 3 | | simplr 496 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐵 ∈ ℝ) |
| 4 | 3 | recnd 7147 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐵 ∈ ℂ) |
| 5 | | simprr 498 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 = (𝐵 + (i · 𝐶))) |
| 6 | 5 | eqcomd 2086 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 + (i · 𝐶)) = 𝐴) |
| 7 | | ax-icn 7071 |
. . . . . . . . 9
⊢ i ∈
ℂ |
| 8 | 7 | a1i 9 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → i ∈
ℂ) |
| 9 | | simprl 497 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐶 ∈ ℝ) |
| 10 | 9 | recnd 7147 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐶 ∈ ℂ) |
| 11 | 8, 10 | mulcld 7139 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) ∈ ℂ) |
| 12 | 2, 4, 11 | subaddd 7437 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → ((𝐴 − 𝐵) = (i · 𝐶) ↔ (𝐵 + (i · 𝐶)) = 𝐴)) |
| 13 | 6, 12 | mpbird 165 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐴 − 𝐵) = (i · 𝐶)) |
| 14 | 1, 3 | resubcld 7485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐴 − 𝐵) ∈ ℝ) |
| 15 | 13, 14 | eqeltrrd 2156 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) ∈ ℝ) |
| 16 | | rimul 7685 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ (i
· 𝐶) ∈ ℝ)
→ 𝐶 =
0) |
| 17 | 9, 15, 16 | syl2anc 403 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐶 = 0) |
| 18 | 17 | oveq2d 5548 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) = (i · 0)) |
| 19 | 7 | mul01i 7495 |
. . . . . 6
⊢ (i
· 0) = 0 |
| 20 | 18, 19 | syl6eq 2129 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (i · 𝐶) = 0) |
| 21 | 13, 20 | eqtrd 2113 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐴 − 𝐵) = 0) |
| 22 | 2, 4, 21 | subeq0d 7427 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐴 = 𝐵) |
| 23 | 22 | eqcomd 2086 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → 𝐵 = 𝐴) |
| 24 | 23, 17 | jca 300 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴 ∧ 𝐶 = 0)) |