![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcld | GIF version |
Description: Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
mulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mulcl 7100 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 403 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 · cmul 6986 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 ax-mulcl 7074 |
This theorem is referenced by: kcnktkm1cn 7487 rereim 7686 cru 7702 apreim 7703 mulreim 7704 apadd1 7708 apneg 7711 mulext1 7712 mulext 7714 mulap0 7744 receuap 7759 divrecap 7776 divcanap3 7786 muldivdirap 7795 divdivdivap 7801 divsubdivap 7816 apmul1 7876 qapne 8724 cnref1o 8733 lincmb01cmp 9025 iccf1o 9026 qbtwnrelemcalc 9264 flqpmodeq 9329 modq0 9331 modqdiffl 9337 modqvalp1 9345 modqcyc 9361 modqcyc2 9362 modqadd1 9363 mulqaddmodid 9366 modqmuladdnn0 9370 qnegmod 9371 modqmul1 9379 mulexpzap 9516 expmulzap 9522 binom2 9585 binom3 9590 bernneq 9593 nn0opthd 9649 ibcval5 9690 remullem 9758 cjreim2 9791 cnrecnv 9797 absval 9887 resqrexlemover 9896 resqrexlemcalc1 9900 resqrexlemnm 9904 absimle 9970 abstri 9990 mulcn2 10151 iisermulc2 10178 climcvg1nlem 10186 dvdscmulr 10224 dvdsmulcr 10225 dvds2ln 10228 oddm1even 10274 divalglemnn 10318 divalglemnqt 10320 flodddiv4 10334 gcdaddm 10375 bezoutlemnewy 10385 bezoutlema 10388 bezoutlemb 10389 lcmgcdlem 10459 oddpwdc 10552 qdencn 10785 |
Copyright terms: Public domain | W3C validator |