![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpred | GIF version |
Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 8744 | . 2 ⊢ ℝ+ ⊆ ℝ | |
2 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
3 | 1, 2 | sseldi 2997 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1433 ℝcr 6980 ℝ+crp 8734 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-in 2979 df-ss 2986 df-rp 8735 |
This theorem is referenced by: rpxrd 8774 rpcnd 8775 rpregt0d 8780 rprege0d 8781 rprene0d 8782 rprecred 8785 ltmulgt11d 8809 ltmulgt12d 8810 gt0divd 8811 ge0divd 8812 lediv12ad 8833 ltexp2a 9528 leexp2a 9529 expnlbnd2 9598 cvg1nlemcxze 9868 cvg1nlemcau 9870 cvg1nlemres 9871 cvg1n 9872 resqrexlemp1rp 9892 resqrexlemfp1 9895 resqrexlemover 9896 resqrexlemdec 9897 resqrexlemdecn 9898 resqrexlemlo 9899 resqrexlemcalc1 9900 resqrexlemcalc2 9901 resqrexlemcalc3 9902 resqrexlemnmsq 9903 resqrexlemnm 9904 resqrexlemcvg 9905 resqrexlemgt0 9906 resqrexlemoverl 9907 resqrexlemglsq 9908 resqrexlemga 9909 cau3lem 10000 addcn2 10149 mulcn2 10151 climrecvg1n 10185 climcvg1nlem 10186 qdencn 10785 |
Copyright terms: Public domain | W3C validator |