| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemnmsq | GIF version | ||
| Description: Lemma for resqrex 9912. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+) |
| resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| resqrexlemnmsq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| resqrexlemnmsq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| resqrexlemnmsq.nm | ⊢ (𝜑 → 𝑁 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| resqrexlemnmsq | ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq | . . . . . . . 8 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+) | |
| 2 | resqrexlemex.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resqrexlemex.agt0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | 1, 2, 3 | resqrexlemf 9893 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 5 | resqrexlemnmsq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 4, 5 | ffvelrnd 5324 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
| 7 | 6 | rpred 8773 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 8 | 7 | resqcld 9631 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℝ) |
| 9 | 8 | recnd 7147 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℂ) |
| 10 | resqrexlemnmsq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 11 | 4, 10 | ffvelrnd 5324 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ+) |
| 12 | 11 | rpred 8773 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 13 | 12 | resqcld 9631 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℝ) |
| 14 | 13 | recnd 7147 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℂ) |
| 15 | 2 | recnd 7147 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 16 | 9, 14, 15 | nnncan2d 7454 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) = (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2))) |
| 17 | 8, 2 | resubcld 7485 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ∈ ℝ) |
| 18 | 13, 2 | resubcld 7485 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ) |
| 19 | 17, 18 | resubcld 7485 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) ∈ ℝ) |
| 20 | 1nn 8050 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 21 | 20 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
| 22 | 4, 21 | ffvelrnd 5324 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℝ+) |
| 23 | 2z 8379 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 24 | 23 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 25 | 22, 24 | rpexpcld 9629 | . . . . 5 ⊢ (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+) |
| 26 | 4nn 8195 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 27 | 26 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℕ) |
| 28 | 27 | nnrpd 8772 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℝ+) |
| 29 | 5 | nnzd 8468 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 30 | 1zzd 8378 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 31 | 29, 30 | zsubcld 8474 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 32 | 28, 31 | rpexpcld 9629 | . . . . 5 ⊢ (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+) |
| 33 | 25, 32 | rpdivcld 8791 | . . . 4 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+) |
| 34 | 33 | rpred 8773 | . . 3 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ) |
| 35 | 1, 2, 3 | resqrexlemover 9896 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐴 < ((𝐹‘𝑀)↑2)) |
| 36 | 10, 35 | mpdan 412 | . . . . 5 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝑀)↑2)) |
| 37 | difrp 8770 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐹‘𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) | |
| 38 | 2, 13, 37 | syl2anc 403 | . . . . 5 ⊢ (𝜑 → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) |
| 39 | 36, 38 | mpbid 145 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+) |
| 40 | 17, 39 | ltsubrpd 8806 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘𝑁)↑2) − 𝐴)) |
| 41 | 1, 2, 3 | resqrexlemcalc3 9902 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 42 | 5, 41 | mpdan 412 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 43 | 19, 17, 34, 40, 42 | ltletrd 7527 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 44 | 16, 43 | eqbrtrrd 3807 | 1 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 {csn 3398 class class class wbr 3785 × cxp 4361 ‘cfv 4922 (class class class)co 5532 ↦ cmpt2 5534 ℝcr 6980 0cc0 6981 1c1 6982 + caddc 6984 < clt 7153 ≤ cle 7154 − cmin 7279 / cdiv 7760 ℕcn 8039 2c2 8089 4c4 8091 ℤcz 8351 ℝ+crp 8734 seqcseq 9431 ↑cexp 9475 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 |
| This theorem is referenced by: resqrexlemnm 9904 |
| Copyright terms: Public domain | W3C validator |