ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1n GIF version

Theorem cvg1n 9872
Description: Convergence of real sequences.

This is a version of caucvgre 9867 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
Assertion
Ref Expression
cvg1n (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝐶,𝑘,𝑛   𝐶,𝑖,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑘,𝐹,𝑛   𝑖,𝐹,𝑗   𝜑,𝑘,𝑛,𝑗   𝜑,𝑖,𝑥,𝑦,𝑗   𝑗,𝑛   𝑦,𝑘,𝑗,𝑖

Proof of Theorem cvg1n
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvg1n.c . . . 4 (𝜑𝐶 ∈ ℝ+)
21rpred 8773 . . 3 (𝜑𝐶 ∈ ℝ)
3 arch 8285 . . 3 (𝐶 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐶 < 𝑧)
42, 3syl 14 . 2 (𝜑 → ∃𝑧 ∈ ℕ 𝐶 < 𝑧)
5 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
65adantr 270 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐹:ℕ⟶ℝ)
71adantr 270 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 ∈ ℝ+)
8 cvg1n.cau . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
98adantr 270 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
10 eqid 2081 . . 3 (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧)))
11 simprl 497 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝑧 ∈ ℕ)
12 simprr 498 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 < 𝑧)
136, 7, 9, 10, 11, 12cvg1nlemres 9871 . 2 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
144, 13rexlimddv 2481 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  wral 2348  wrex 2349   class class class wbr 3785  cmpt 3839  wf 4918  cfv 4922  (class class class)co 5532  cr 6980   + caddc 6984   · cmul 6986   < clt 7153   / cdiv 7760  cn 8039  cuz 8619  +crp 8734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735
This theorem is referenced by:  resqrexlemcvg  9905  climrecvg1n  10185
  Copyright terms: Public domain W3C validator