| Step | Hyp | Ref
| Expression |
| 1 | | simplr 496 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) |
| 2 | | cvg1n.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| 3 | 2 | ad2antrr 471 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:ℕ⟶ℝ) |
| 4 | | cvg1nlem.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ ℕ) |
| 5 | 4 | ad2antrr 471 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℕ) |
| 6 | 1, 5 | nnmulcld 8087 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℕ) |
| 7 | 3, 6 | ffvelrnd 5324 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘(𝑛 · 𝑍)) ∈ ℝ) |
| 8 | | oveq1 5539 |
. . . . . . . . 9
⊢ (𝑗 = 𝑛 → (𝑗 · 𝑍) = (𝑛 · 𝑍)) |
| 9 | 8 | fveq2d 5202 |
. . . . . . . 8
⊢ (𝑗 = 𝑛 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑛 · 𝑍))) |
| 10 | | cvg1nlem.g |
. . . . . . . 8
⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) |
| 11 | 9, 10 | fvmptg 5269 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (𝐹‘(𝑛 · 𝑍)) ∈ ℝ) → (𝐺‘𝑛) = (𝐹‘(𝑛 · 𝑍))) |
| 12 | 1, 7, 11 | syl2anc 403 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) = (𝐹‘(𝑛 · 𝑍))) |
| 13 | 12, 7 | eqeltrd 2155 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) ∈ ℝ) |
| 14 | | eluznn 8687 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
| 15 | 14 | adantll 459 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
| 16 | 15, 5 | nnmulcld 8087 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈ ℕ) |
| 17 | 3, 16 | ffvelrnd 5324 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘(𝑘 · 𝑍)) ∈ ℝ) |
| 18 | | oveq1 5539 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 · 𝑍) = (𝑘 · 𝑍)) |
| 19 | 18 | fveq2d 5202 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑘 · 𝑍))) |
| 20 | 19, 10 | fvmptg 5269 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (𝐹‘(𝑘 · 𝑍)) ∈ ℝ) → (𝐺‘𝑘) = (𝐹‘(𝑘 · 𝑍))) |
| 21 | 15, 17, 20 | syl2anc 403 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) = (𝐹‘(𝑘 · 𝑍))) |
| 22 | 21, 17 | eqeltrd 2155 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
| 23 | | cvg1n.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 24 | 23 | rpred 8773 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 25 | 24 | ad2antrr 471 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 ∈ ℝ) |
| 26 | 25, 6 | nndivred 8088 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / (𝑛 · 𝑍)) ∈ ℝ) |
| 27 | 22, 26 | readdcld 7148 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∈ ℝ) |
| 28 | 1 | nnrecred 8085 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (1 / 𝑛) ∈
ℝ) |
| 29 | 22, 28 | readdcld 7148 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (1 / 𝑛)) ∈ ℝ) |
| 30 | | eluzle 8631 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → 𝑛 ≤ 𝑘) |
| 31 | 30 | adantl 271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ≤ 𝑘) |
| 32 | 1 | nnred 8052 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ) |
| 33 | 15 | nnred 8052 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℝ) |
| 34 | 5 | nnrpd 8772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈
ℝ+) |
| 35 | 32, 33, 34 | lemul1d 8817 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 ≤ 𝑘 ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) |
| 36 | 31, 35 | mpbid 145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ≤ (𝑘 · 𝑍)) |
| 37 | 6 | nnzd 8468 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℤ) |
| 38 | 16 | nnzd 8468 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈ ℤ) |
| 39 | | eluz 8632 |
. . . . . . . . . . 11
⊢ (((𝑛 · 𝑍) ∈ ℤ ∧ (𝑘 · 𝑍) ∈ ℤ) → ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) |
| 40 | 37, 38, 39 | syl2anc 403 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) ↔ (𝑛 · 𝑍) ≤ (𝑘 · 𝑍))) |
| 41 | 36, 40 | mpbird 165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍))) |
| 42 | | cvg1n.cau |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| 43 | | fveq2 5198 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑏 → (𝐹‘𝑘) = (𝐹‘𝑏)) |
| 44 | 43 | oveq1d 5547 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) + (𝐶 / 𝑛)) = ((𝐹‘𝑏) + (𝐶 / 𝑛))) |
| 45 | 44 | breq2d 3797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)))) |
| 46 | 43 | breq1d 3795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑏 → ((𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| 47 | 45, 46 | anbi12d 456 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑏 → (((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))))) |
| 48 | 47 | cbvralv 2577 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| 49 | 48 | ralbii 2372 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑛 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| 50 | | fveq2 5198 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑎)) |
| 51 | | fveq2 5198 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → (𝐹‘𝑛) = (𝐹‘𝑎)) |
| 52 | | oveq2 5540 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑎 → (𝐶 / 𝑛) = (𝐶 / 𝑎)) |
| 53 | 52 | oveq2d 5548 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑏) + (𝐶 / 𝑛)) = ((𝐹‘𝑏) + (𝐶 / 𝑎))) |
| 54 | 51, 53 | breq12d 3798 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)))) |
| 55 | 51, 52 | oveq12d 5550 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑛) + (𝐶 / 𝑛)) = ((𝐹‘𝑎) + (𝐶 / 𝑎))) |
| 56 | 55 | breq2d 3797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑎 → ((𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛)) ↔ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
| 57 | 54, 56 | anbi12d 456 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑎 → (((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))))) |
| 58 | 50, 57 | raleqbidv 2561 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑎 → (∀𝑏 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))))) |
| 59 | 58 | cbvralv 2577 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ ∀𝑏 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑏) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
| 60 | 49, 59 | bitri 182 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
| 61 | 42, 60 | sylib 120 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
| 62 | 61 | ad2antrr 471 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑎 ∈ ℕ ∀𝑏 ∈
(ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)))) |
| 63 | | fveq2 5198 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 · 𝑍) → (ℤ≥‘𝑎) =
(ℤ≥‘(𝑛 · 𝑍))) |
| 64 | | fveq2 5198 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑛 · 𝑍) → (𝐹‘𝑎) = (𝐹‘(𝑛 · 𝑍))) |
| 65 | | oveq2 5540 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑛 · 𝑍) → (𝐶 / 𝑎) = (𝐶 / (𝑛 · 𝑍))) |
| 66 | 65 | oveq2d 5548 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑏) + (𝐶 / 𝑎)) = ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍)))) |
| 67 | 64, 66 | breq12d 3798 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))))) |
| 68 | 64, 65 | oveq12d 5550 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑎) + (𝐶 / 𝑎)) = ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
| 69 | 68 | breq2d 3797 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑛 · 𝑍) → ((𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎)) ↔ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 70 | 67, 69 | anbi12d 456 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑛 · 𝑍) → (((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 71 | 63, 70 | raleqbidv 2561 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑛 · 𝑍) → (∀𝑏 ∈ (ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) ↔ ∀𝑏 ∈ (ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 72 | 71 | rspcv 2697 |
. . . . . . . . . 10
⊢ ((𝑛 · 𝑍) ∈ ℕ → (∀𝑎 ∈ ℕ ∀𝑏 ∈
(ℤ≥‘𝑎)((𝐹‘𝑎) < ((𝐹‘𝑏) + (𝐶 / 𝑎)) ∧ (𝐹‘𝑏) < ((𝐹‘𝑎) + (𝐶 / 𝑎))) → ∀𝑏 ∈ (ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 73 | 6, 62, 72 | sylc 61 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∀𝑏 ∈
(ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 74 | | fveq2 5198 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑘 · 𝑍) → (𝐹‘𝑏) = (𝐹‘(𝑘 · 𝑍))) |
| 75 | 74 | oveq1d 5547 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
| 76 | 75 | breq2d 3797 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 77 | 74 | breq1d 3795 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑘 · 𝑍) → ((𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 78 | 76, 77 | anbi12d 456 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑘 · 𝑍) → (((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 79 | 78 | rspcv 2697 |
. . . . . . . . 9
⊢ ((𝑘 · 𝑍) ∈
(ℤ≥‘(𝑛 · 𝑍)) → (∀𝑏 ∈ (ℤ≥‘(𝑛 · 𝑍))((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘𝑏) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘𝑏) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 80 | 41, 73, 79 | sylc 61 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 81 | 21 | oveq1d 5547 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
| 82 | 81 | breq2d 3797 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 83 | 21 | breq1d 3795 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 84 | 82, 83 | anbi12d 456 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐹‘(𝑘 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐹‘(𝑘 · 𝑍)) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 85 | 80, 84 | mpbird 165 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 86 | 12 | breq1d 3795 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))))) |
| 87 | 12 | oveq1d 5547 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) = ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))) |
| 88 | 87 | breq2d 3797 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) ↔ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍))))) |
| 89 | 86, 88 | anbi12d 456 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍)))) ↔ ((𝐹‘(𝑛 · 𝑍)) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐹‘(𝑛 · 𝑍)) + (𝐶 / (𝑛 · 𝑍)))))) |
| 90 | 85, 89 | mpbird 165 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))))) |
| 91 | 90 | simpld 110 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) < ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍)))) |
| 92 | 5 | nnred 8052 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℝ) |
| 93 | 1 | nnrpd 8772 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℝ+) |
| 94 | | cvg1nlem.start |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝑍) |
| 95 | 94 | ad2antrr 471 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐶 < 𝑍) |
| 96 | 25, 92, 93, 95 | ltmul1dd 8829 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 · 𝑛) < (𝑍 · 𝑛)) |
| 97 | 6 | nncnd 8053 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈ ℂ) |
| 98 | 97 | mulid2d 7137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (1 · (𝑛 · 𝑍)) = (𝑛 · 𝑍)) |
| 99 | 98 | breq2d 3797 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (1 · (𝑛 · 𝑍)) ↔ (𝐶 · 𝑛) < (𝑛 · 𝑍))) |
| 100 | | 1red 7134 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 1 ∈
ℝ) |
| 101 | 6 | nnrpd 8772 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) ∈
ℝ+) |
| 102 | 25, 93, 100, 101 | lt2mul2divd 8836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (1 · (𝑛 · 𝑍)) ↔ (𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛))) |
| 103 | 1 | nncnd 8053 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℂ) |
| 104 | 5 | nncnd 8053 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑍 ∈ ℂ) |
| 105 | 103, 104 | mulcomd 7140 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝑛 · 𝑍) = (𝑍 · 𝑛)) |
| 106 | 105 | breq2d 3797 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 · 𝑛) < (𝑛 · 𝑍) ↔ (𝐶 · 𝑛) < (𝑍 · 𝑛))) |
| 107 | 99, 102, 106 | 3bitr3d 216 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛) ↔ (𝐶 · 𝑛) < (𝑍 · 𝑛))) |
| 108 | 96, 107 | mpbird 165 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐶 / (𝑛 · 𝑍)) < (1 / 𝑛)) |
| 109 | 26, 28, 22, 108 | ltadd2dd 7526 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑘) + (𝐶 / (𝑛 · 𝑍))) < ((𝐺‘𝑘) + (1 / 𝑛))) |
| 110 | 13, 27, 29, 91, 109 | lttrd 7235 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛))) |
| 111 | 13, 26 | readdcld 7148 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) ∈ ℝ) |
| 112 | 13, 28 | readdcld 7148 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (1 / 𝑛)) ∈ ℝ) |
| 113 | 90 | simprd 112 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) < ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍)))) |
| 114 | 26, 28, 13, 108 | ltadd2dd 7526 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) + (𝐶 / (𝑛 · 𝑍))) < ((𝐺‘𝑛) + (1 / 𝑛))) |
| 115 | 22, 111, 112, 113, 114 | lttrd 7235 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛))) |
| 116 | 110, 115 | jca 300 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |
| 117 | 116 | ralrimiva 2434 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |
| 118 | 117 | ralrimiva 2434 |
1
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) |