![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zex | GIF version |
Description: The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
zex | ⊢ ℤ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7097 | . 2 ⊢ ℂ ∈ V | |
2 | zsscn 8359 | . 2 ⊢ ℤ ⊆ ℂ | |
3 | 1, 2 | ssexi 3916 | 1 ⊢ ℤ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1433 Vcvv 2601 ℂcc 6979 ℤcz 8351 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-neg 7282 df-z 8352 |
This theorem is referenced by: dfuzi 8457 uzval 8621 uzf 8622 fzval 9031 fzf 9033 flval 9276 frec2uzzd 9402 frec2uzsucd 9403 frec2uzrand 9407 frec2uzf1od 9408 frecuzrdgrrn 9410 frec2uzrdg 9411 frecuzrdgrom 9412 frecuzrdgsuc 9417 frecfzennn 9419 climz 10131 iserclim0 10144 climaddc1 10167 climmulc2 10169 climsubc1 10170 climsubc2 10171 climle 10172 climlec2 10179 |
Copyright terms: Public domain | W3C validator |