ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuc GIF version

Theorem frecuzrdgsuc 9417
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9401 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 28-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
uzrdg.s (𝜑𝑆𝑉)
uzrdg.a (𝜑𝐴𝑆)
uzrdg.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
uzrdg.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgfn.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuc ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem frecuzrdgsuc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uz.1 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
21adantr 270 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
3 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
4 uzrdg.s . . . . . . 7 (𝜑𝑆𝑉)
54adantr 270 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑆𝑉)
6 uzrdg.a . . . . . . 7 (𝜑𝐴𝑆)
76adantr 270 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐴𝑆)
8 uzrdg.f . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
98adantlr 460 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
10 uzrdg.2 . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
11 peano2uz 8671 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
1211adantl 271 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐵 + 1) ∈ (ℤ𝐶))
132, 3, 5, 7, 9, 10, 12frecuzrdglem 9413 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
14 frecuzrdgfn.3 . . . . . 6 (𝜑𝑇 = ran 𝑅)
1514adantr 270 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝑇 = ran 𝑅)
1613, 15eleqtrrd 2158 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇)
171, 3, 4, 6, 8, 10, 14frecuzrdgfn 9414 . . . . . . 7 (𝜑𝑇 Fn (ℤ𝐶))
18 fnfun 5016 . . . . . . 7 (𝑇 Fn (ℤ𝐶) → Fun 𝑇)
1917, 18syl 14 . . . . . 6 (𝜑 → Fun 𝑇)
20 funopfv 5234 . . . . . 6 (Fun 𝑇 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2119, 20syl 14 . . . . 5 (𝜑 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2221adantr 270 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑇 → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
2316, 22mpd 13 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))))
241, 3frec2uzf1od 9408 . . . . . . . . 9 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
25 f1ocnvdm 5441 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
2624, 25sylan 277 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
272, 3, 26frec2uzsucd 9403 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
28 f1ocnvfv2 5438 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
2924, 28sylan 277 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
3029oveq1d 5547 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵)) + 1) = (𝐵 + 1))
3127, 30eqtrd 2113 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘suc (𝐺𝐵)) = (𝐵 + 1))
32 peano2 4336 . . . . . . . 8 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
3326, 32syl 14 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → suc (𝐺𝐵) ∈ ω)
34 f1ocnvfv 5439 . . . . . . . 8 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3524, 34sylan 277 . . . . . . 7 ((𝜑 ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3633, 35syldan 276 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
3731, 36mpd 13 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵))
3837fveq2d 5202 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺‘(𝐵 + 1))) = (𝑅‘suc (𝐺𝐵)))
3938fveq2d 5202 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
4023, 39eqtrd 2113 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
41 zex 8360 . . . . . . . . . . 11 ℤ ∈ V
42 uzssz 8638 . . . . . . . . . . 11 (ℤ𝐶) ⊆ ℤ
4341, 42ssexi 3916 . . . . . . . . . 10 (ℤ𝐶) ∈ V
44 mpt2exga 5855 . . . . . . . . . 10 (((ℤ𝐶) ∈ V ∧ 𝑆𝑉) → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
4543, 44mpan 414 . . . . . . . . 9 (𝑆𝑉 → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
46 vex 2604 . . . . . . . . . 10 𝑧 ∈ V
47 fvexg 5214 . . . . . . . . . 10 (((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
4846, 47mpan2 415 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
495, 45, 483syl 17 . . . . . . . 8 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
5049alrimiv 1795 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
51 opelxp 4392 . . . . . . . . 9 (⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆) ↔ (𝐶 ∈ ℤ ∧ 𝐴𝑆))
521, 6, 51sylanbrc 408 . . . . . . . 8 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆))
5352adantr 270 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆))
54 frecsuc 6014 . . . . . . 7 ((∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V ∧ ⟨𝐶, 𝐴⟩ ∈ (ℤ × 𝑆) ∧ (𝐺𝐵) ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5550, 53, 26, 54syl3anc 1169 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))))
5610fveq1i 5199 . . . . . 6 (𝑅‘suc (𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc (𝐺𝐵))
5710fveq1i 5199 . . . . . . 7 (𝑅‘(𝐺𝐵)) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵))
5857fveq2i 5201 . . . . . 6 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘(𝐺𝐵)))
5955, 56, 583eqtr4g 2138 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
602, 3, 5, 7, 9, 10, 26frec2uzrdg 9411 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6160fveq2d 5202 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
62 df-ov 5535 . . . . . 6 ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
6361, 62syl6eqr 2131 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
642, 3, 26frec2uzuzd 9404 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) ∈ (ℤ𝐶))
652, 3, 5, 7, 9, 10frecuzrdgrrn 9410 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
6626, 65mpdan 412 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆))
67 xp2nd 5813 . . . . . . 7 ((𝑅‘(𝐺𝐵)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
6866, 67syl 14 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆)
6930, 12eqeltrd 2155 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶))
709caovclg 5673 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐶)) ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
7170, 64, 68caovcld 5674 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆)
72 opexg 3983 . . . . . . 7 ((((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶) ∧ ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V)
7369, 71, 72syl2anc 403 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V)
74 oveq1 5539 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧 + 1) = ((𝐺‘(𝐺𝐵)) + 1))
75 oveq1 5539 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹𝑤))
7674, 75opeq12d 3578 . . . . . . 7 (𝑧 = (𝐺‘(𝐺𝐵)) → ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩)
77 oveq2 5540 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ((𝐺‘(𝐺𝐵))𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
7877opeq2d 3577 . . . . . . 7 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
79 oveq1 5539 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
80 oveq1 5539 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦))
8179, 80opeq12d 3578 . . . . . . . 8 (𝑥 = 𝑧 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩)
82 oveq2 5540 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤))
8382opeq2d 3577 . . . . . . . 8 (𝑦 = 𝑤 → ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
8481, 83cbvmpt2v 5604 . . . . . . 7 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑧 ∈ (ℤ𝐶), 𝑤𝑆 ↦ ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
8576, 78, 84ovmpt2g 5655 . . . . . 6 (((𝐺‘(𝐺𝐵)) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ 𝑆 ∧ ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
8664, 68, 73, 85syl3anc 1169 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
8759, 63, 863eqtrd 2117 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑅‘suc (𝐺𝐵)) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
8887fveq2d 5202 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩))
89 op2ndg 5798 . . . 4 ((((𝐺‘(𝐺𝐵)) + 1) ∈ (ℤ𝐶) ∧ ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ 𝑆) → (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9069, 71, 89syl2anc 403 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
9188, 90eqtrd 2113 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
92 simpr 108 . . . . . . 7 ((𝜑𝐵 ∈ (ℤ𝐶)) → 𝐵 ∈ (ℤ𝐶))
932, 3, 5, 7, 9, 10, 92frecuzrdglem 9413 . . . . . 6 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
9493, 15eleqtrrd 2158 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇)
95 funopfv 5234 . . . . . . 7 (Fun 𝑇 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
9619, 95syl 14 . . . . . 6 (𝜑 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
9796adantr 270 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐶)) → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑇 → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
9894, 97mpd 13 . . . 4 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
9998eqcomd 2086 . . 3 ((𝜑𝐵 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝐵))) = (𝑇𝐵))
10029, 99oveq12d 5550 . 2 ((𝜑𝐵 ∈ (ℤ𝐶)) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) = (𝐵𝐹(𝑇𝐵)))
10140, 91, 1003eqtrd 2117 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  Vcvv 2601  cop 3401  cmpt 3839  suc csuc 4120  ωcom 4331   × cxp 4361  ccnv 4362  ran crn 4364  Fun wfun 4916   Fn wfn 4917  1-1-ontowf1o 4921  cfv 4922  (class class class)co 5532  cmpt2 5534  2nd c2nd 5786  freccfrec 6000  1c1 6982   + caddc 6984  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  iseqp1  9445
  Copyright terms: Public domain W3C validator