ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzrdg GIF version

Theorem frec2uzrdg 9411
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. This lemma shows that evaluating 𝑅 at an element of ω gives an ordered pair whose first element is the index (translated from ω to (ℤ𝐶)). See comment in frec2uz0d 9401 which describes 𝐺 and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
uzrdg.s (𝜑𝑆𝑉)
uzrdg.a (𝜑𝐴𝑆)
uzrdg.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
uzrdg.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
uzrdg.b (𝜑𝐵 ∈ ω)
Assertion
Ref Expression
frec2uzrdg (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem frec2uzrdg
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzrdg.b . 2 (𝜑𝐵 ∈ ω)
2 fveq2 5198 . . . . 5 (𝑧 = 𝐵 → (𝑅𝑧) = (𝑅𝐵))
3 fveq2 5198 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
42fveq2d 5202 . . . . . 6 (𝑧 = 𝐵 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝐵)))
53, 4opeq12d 3578 . . . . 5 (𝑧 = 𝐵 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
62, 5eqeq12d 2095 . . . 4 (𝑧 = 𝐵 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
76imbi2d 228 . . 3 (𝑧 = 𝐵 → ((𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩) ↔ (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)))
8 fveq2 5198 . . . . 5 (𝑧 = ∅ → (𝑅𝑧) = (𝑅‘∅))
9 fveq2 5198 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
108fveq2d 5202 . . . . . 6 (𝑧 = ∅ → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘∅)))
119, 10opeq12d 3578 . . . . 5 (𝑧 = ∅ → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
128, 11eqeq12d 2095 . . . 4 (𝑧 = ∅ → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩))
13 fveq2 5198 . . . . 5 (𝑧 = 𝑣 → (𝑅𝑧) = (𝑅𝑣))
14 fveq2 5198 . . . . . 6 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
1513fveq2d 5202 . . . . . 6 (𝑧 = 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅𝑣)))
1614, 15opeq12d 3578 . . . . 5 (𝑧 = 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
1713, 16eqeq12d 2095 . . . 4 (𝑧 = 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
18 fveq2 5198 . . . . 5 (𝑧 = suc 𝑣 → (𝑅𝑧) = (𝑅‘suc 𝑣))
19 fveq2 5198 . . . . . 6 (𝑧 = suc 𝑣 → (𝐺𝑧) = (𝐺‘suc 𝑣))
2018fveq2d 5202 . . . . . 6 (𝑧 = suc 𝑣 → (2nd ‘(𝑅𝑧)) = (2nd ‘(𝑅‘suc 𝑣)))
2119, 20opeq12d 3578 . . . . 5 (𝑧 = suc 𝑣 → ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
2218, 21eqeq12d 2095 . . . 4 (𝑧 = suc 𝑣 → ((𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩ ↔ (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
23 uzrdg.2 . . . . . . 7 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
2423fveq1i 5199 . . . . . 6 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
25 frec2uz.1 . . . . . . . 8 (𝜑𝐶 ∈ ℤ)
26 uzrdg.a . . . . . . . 8 (𝜑𝐴𝑆)
27 opexg 3983 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
2825, 26, 27syl2anc 403 . . . . . . 7 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ V)
29 frec0g 6006 . . . . . . 7 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3028, 29syl 14 . . . . . 6 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3124, 30syl5eq 2125 . . . . 5 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
32 frec2uz.2 . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3325, 32frec2uz0d 9401 . . . . . 6 (𝜑 → (𝐺‘∅) = 𝐶)
3431fveq2d 5202 . . . . . . 7 (𝜑 → (2nd ‘(𝑅‘∅)) = (2nd ‘⟨𝐶, 𝐴⟩))
35 uzid 8633 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
3625, 35syl 14 . . . . . . . 8 (𝜑𝐶 ∈ (ℤ𝐶))
37 op2ndg 5798 . . . . . . . 8 ((𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆) → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3836, 26, 37syl2anc 403 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐶, 𝐴⟩) = 𝐴)
3934, 38eqtrd 2113 . . . . . 6 (𝜑 → (2nd ‘(𝑅‘∅)) = 𝐴)
4033, 39opeq12d 3578 . . . . 5 (𝜑 → ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩ = ⟨𝐶, 𝐴⟩)
4131, 40eqtr4d 2116 . . . 4 (𝜑 → (𝑅‘∅) = ⟨(𝐺‘∅), (2nd ‘(𝑅‘∅))⟩)
42 zex 8360 . . . . . . . . . . . . . . . 16 ℤ ∈ V
43 uzssz 8638 . . . . . . . . . . . . . . . 16 (ℤ𝐶) ⊆ ℤ
4442, 43ssexi 3916 . . . . . . . . . . . . . . 15 (ℤ𝐶) ∈ V
4544a1i 9 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ ω) → (ℤ𝐶) ∈ V)
46 uzrdg.s . . . . . . . . . . . . . . 15 (𝜑𝑆𝑉)
4746adantr 270 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ ω) → 𝑆𝑉)
48 mpt2exga 5855 . . . . . . . . . . . . . 14 (((ℤ𝐶) ∈ V ∧ 𝑆𝑉) → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
4945, 47, 48syl2anc 403 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ ω) → (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V)
50 vex 2604 . . . . . . . . . . . . . 14 𝑧 ∈ V
5150a1i 9 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ ω) → 𝑧 ∈ V)
52 fvexg 5214 . . . . . . . . . . . . 13 (((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
5349, 51, 52syl2anc 403 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
5453alrimiv 1795 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V)
5528adantr 270 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ⟨𝐶, 𝐴⟩ ∈ V)
56 simpr 108 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → 𝑣 ∈ ω)
57 frecsuc 6014 . . . . . . . . . . 11 ((∀𝑧((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ V ∧ ⟨𝐶, 𝐴⟩ ∈ V ∧ 𝑣 ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣)))
5854, 55, 56, 57syl3anc 1169 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣)))
5923fveq1i 5199 . . . . . . . . . 10 (𝑅‘suc 𝑣) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑣)
6023fveq1i 5199 . . . . . . . . . . 11 (𝑅𝑣) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣)
6160fveq2i 5201 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑣))
6258, 59, 613eqtr4g 2138 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝑅‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
6362adantr 270 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)))
64 fveq2 5198 . . . . . . . . 9 ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩))
65 df-ov 5535 . . . . . . . . . 10 ((𝐺𝑣)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩)
6625adantr 270 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → 𝐶 ∈ ℤ)
6766, 32, 56frec2uzuzd 9404 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → (𝐺𝑣) ∈ (ℤ𝐶))
68 uzrdg.f . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
6925, 32, 46, 26, 68, 23frecuzrdgrrn 9410 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → (𝑅𝑣) ∈ ((ℤ𝐶) × 𝑆))
70 xp2nd 5813 . . . . . . . . . . . 12 ((𝑅𝑣) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅𝑣)) ∈ 𝑆)
7169, 70syl 14 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → (2nd ‘(𝑅𝑣)) ∈ 𝑆)
72 peano2uz 8671 . . . . . . . . . . . . 13 ((𝐺𝑣) ∈ (ℤ𝐶) → ((𝐺𝑣) + 1) ∈ (ℤ𝐶))
7367, 72syl 14 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣) + 1) ∈ (ℤ𝐶))
7468caovclg 5673 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
7574adantlr 460 . . . . . . . . . . . . 13 (((𝜑𝑣 ∈ ω) ∧ (𝑧 ∈ (ℤ𝐶) ∧ 𝑤𝑆)) → (𝑧𝐹𝑤) ∈ 𝑆)
7675, 67, 71caovcld 5674 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆)
77 opelxp 4392 . . . . . . . . . . . 12 (⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (((𝐺𝑣) + 1) ∈ (ℤ𝐶) ∧ ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆))
7873, 76, 77sylanbrc 408 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ ((ℤ𝐶) × 𝑆))
79 oveq1 5539 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → (𝑤 + 1) = ((𝐺𝑣) + 1))
80 oveq1 5539 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑣) → (𝑤𝐹𝑧) = ((𝐺𝑣)𝐹𝑧))
8179, 80opeq12d 3578 . . . . . . . . . . . 12 (𝑤 = (𝐺𝑣) → ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩)
82 oveq2 5540 . . . . . . . . . . . . 13 (𝑧 = (2nd ‘(𝑅𝑣)) → ((𝐺𝑣)𝐹𝑧) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
8382opeq2d 3577 . . . . . . . . . . . 12 (𝑧 = (2nd ‘(𝑅𝑣)) → ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹𝑧)⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
84 oveq1 5539 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥 + 1) = (𝑤 + 1))
85 oveq1 5539 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥𝐹𝑦) = (𝑤𝐹𝑦))
8684, 85opeq12d 3578 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩)
87 oveq2 5540 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑤𝐹𝑦) = (𝑤𝐹𝑧))
8887opeq2d 3577 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ⟨(𝑤 + 1), (𝑤𝐹𝑦)⟩ = ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
8986, 88cbvmpt2v 5604 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑤 ∈ (ℤ𝐶), 𝑧𝑆 ↦ ⟨(𝑤 + 1), (𝑤𝐹𝑧)⟩)
9081, 83, 89ovmpt2g 5655 . . . . . . . . . . 11 (((𝐺𝑣) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅𝑣)) ∈ 𝑆 ∧ ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((𝐺𝑣)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
9167, 71, 78, 90syl3anc 1169 . . . . . . . . . 10 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑣))) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
9265, 91syl5eqr 2127 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
9364, 92sylan9eqr 2135 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑣)) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
9463, 93eqtrd 2113 . . . . . . 7 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
9566, 32, 56frec2uzsucd 9403 . . . . . . . . 9 ((𝜑𝑣 ∈ ω) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
9695adantr 270 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝐺‘suc 𝑣) = ((𝐺𝑣) + 1))
9794fveq2d 5202 . . . . . . . . 9 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩))
9866, 32, 56frec2uzzd 9402 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ ω) → (𝐺𝑣) ∈ ℤ)
9998peano2zd 8472 . . . . . . . . . . 11 ((𝜑𝑣 ∈ ω) → ((𝐺𝑣) + 1) ∈ ℤ)
10099adantr 270 . . . . . . . . . 10 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ((𝐺𝑣) + 1) ∈ ℤ)
10176adantr 270 . . . . . . . . . 10 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆)
102 op2ndg 5798 . . . . . . . . . 10 ((((𝐺𝑣) + 1) ∈ ℤ ∧ ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))) ∈ 𝑆) → (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
103100, 101, 102syl2anc 403 . . . . . . . . 9 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
10497, 103eqtrd 2113 . . . . . . . 8 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (2nd ‘(𝑅‘suc 𝑣)) = ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣))))
10596, 104opeq12d 3578 . . . . . . 7 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩ = ⟨((𝐺𝑣) + 1), ((𝐺𝑣)𝐹(2nd ‘(𝑅𝑣)))⟩)
10694, 105eqtr4d 2116 . . . . . 6 (((𝜑𝑣 ∈ ω) ∧ (𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩) → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)
107106ex 113 . . . . 5 ((𝜑𝑣 ∈ ω) → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩))
108107expcom 114 . . . 4 (𝑣 ∈ ω → (𝜑 → ((𝑅𝑣) = ⟨(𝐺𝑣), (2nd ‘(𝑅𝑣))⟩ → (𝑅‘suc 𝑣) = ⟨(𝐺‘suc 𝑣), (2nd ‘(𝑅‘suc 𝑣))⟩)))
10912, 17, 22, 41, 108finds2 4342 . . 3 (𝑧 ∈ ω → (𝜑 → (𝑅𝑧) = ⟨(𝐺𝑧), (2nd ‘(𝑅𝑧))⟩))
1107, 109vtoclga 2664 . 2 (𝐵 ∈ ω → (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩))
1111, 110mpcom 36 1 (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  Vcvv 2601  c0 3251  cop 3401  cmpt 3839  suc csuc 4120  ωcom 4331   × cxp 4361  cfv 4922  (class class class)co 5532  cmpt2 5534  2nd c2nd 5786  freccfrec 6000  1c1 6982   + caddc 6984  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frecuzrdglem  9413  frecuzrdgfn  9414  frecuzrdgsuc  9417
  Copyright terms: Public domain W3C validator