![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unirnioo | GIF version |
Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
Ref | Expression |
---|---|
unirnioo | ⊢ ℝ = ∪ ran (,) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioomax 8971 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
2 | ioof 8994 | . . . . . 6 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | ffn 5066 | . . . . . 6 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ (,) Fn (ℝ* × ℝ*) |
5 | mnfxr 8848 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
6 | pnfxr 8846 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
7 | fnovrn 5668 | . . . . 5 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,)) | |
8 | 4, 5, 6, 7 | mp3an 1268 | . . . 4 ⊢ (-∞(,)+∞) ∈ ran (,) |
9 | 1, 8 | eqeltrri 2152 | . . 3 ⊢ ℝ ∈ ran (,) |
10 | elssuni 3629 | . . 3 ⊢ (ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,)) | |
11 | 9, 10 | ax-mp 7 | . 2 ⊢ ℝ ⊆ ∪ ran (,) |
12 | frn 5072 | . . . 4 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ) | |
13 | 2, 12 | ax-mp 7 | . . 3 ⊢ ran (,) ⊆ 𝒫 ℝ |
14 | sspwuni 3760 | . . 3 ⊢ (ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ) | |
15 | 13, 14 | mpbi 143 | . 2 ⊢ ∪ ran (,) ⊆ ℝ |
16 | 11, 15 | eqssi 3015 | 1 ⊢ ℝ = ∪ ran (,) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 ⊆ wss 2973 𝒫 cpw 3382 ∪ cuni 3601 × cxp 4361 ran crn 4364 Fn wfn 4917 ⟶wf 4918 (class class class)co 5532 ℝcr 6980 +∞cpnf 7150 -∞cmnf 7151 ℝ*cxr 7152 (,)cioo 8911 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-ioo 8915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |