ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomf1o GIF version

Theorem xpcomf1o 6322
Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypothesis
Ref Expression
xpcomf1o.1 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
Assertion
Ref Expression
xpcomf1o 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem xpcomf1o
StepHypRef Expression
1 relxp 4465 . . . 4 Rel (𝐴 × 𝐵)
2 cnvf1o 5866 . . . 4 (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵))
31, 2ax-mp 7 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)
4 xpcomf1o.1 . . . 4 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
5 f1oeq1 5137 . . . 4 (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)))
64, 5ax-mp 7 . . 3 (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥}):(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵))
73, 6mpbir 144 . 2 𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵)
8 cnvxp 4762 . . 3 (𝐴 × 𝐵) = (𝐵 × 𝐴)
9 f1oeq3 5139 . . 3 ((𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)))
108, 9ax-mp 7 . 2 (𝐹:(𝐴 × 𝐵)–1-1-onto(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))
117, 10mpbi 143 1 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  {csn 3398   cuni 3601  cmpt 3839   × cxp 4361  ccnv 4362  Rel wrel 4368  1-1-ontowf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by:  xpcomco  6323  xpcomen  6324
  Copyright terms: Public domain W3C validator