![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvf1o | GIF version |
Description: Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.) |
Ref | Expression |
---|---|
cnvf1o | ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2081 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}) | |
2 | snexg 3956 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ V) | |
3 | cnvexg 4875 | . . . 4 ⊢ ({𝑥} ∈ V → ◡{𝑥} ∈ V) | |
4 | uniexg 4193 | . . . 4 ⊢ (◡{𝑥} ∈ V → ∪ ◡{𝑥} ∈ V) | |
5 | 2, 3, 4 | 3syl 17 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ ◡{𝑥} ∈ V) |
6 | 5 | adantl 271 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑥 ∈ 𝐴) → ∪ ◡{𝑥} ∈ V) |
7 | snexg 3956 | . . . 4 ⊢ (𝑦 ∈ ◡𝐴 → {𝑦} ∈ V) | |
8 | cnvexg 4875 | . . . 4 ⊢ ({𝑦} ∈ V → ◡{𝑦} ∈ V) | |
9 | uniexg 4193 | . . . 4 ⊢ (◡{𝑦} ∈ V → ∪ ◡{𝑦} ∈ V) | |
10 | 7, 8, 9 | 3syl 17 | . . 3 ⊢ (𝑦 ∈ ◡𝐴 → ∪ ◡{𝑦} ∈ V) |
11 | 10 | adantl 271 | . 2 ⊢ ((Rel 𝐴 ∧ 𝑦 ∈ ◡𝐴) → ∪ ◡{𝑦} ∈ V) |
12 | cnvf1olem 5865 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
13 | relcnv 4723 | . . . . 5 ⊢ Rel ◡𝐴 | |
14 | simpr 108 | . . . . 5 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) | |
15 | cnvf1olem 5865 | . . . . 5 ⊢ ((Rel ◡𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) | |
16 | 13, 14, 15 | sylancr 405 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
17 | dfrel2 4791 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
18 | eleq2 2142 | . . . . . . 7 ⊢ (◡◡𝐴 = 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) | |
19 | 17, 18 | sylbi 119 | . . . . . 6 ⊢ (Rel 𝐴 → (𝑥 ∈ ◡◡𝐴 ↔ 𝑥 ∈ 𝐴)) |
20 | 19 | anbi1d 452 | . . . . 5 ⊢ (Rel 𝐴 → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
21 | 20 | adantr 270 | . . . 4 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → ((𝑥 ∈ ◡◡𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}))) |
22 | 16, 21 | mpbid 145 | . . 3 ⊢ ((Rel 𝐴 ∧ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦})) → (𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥})) |
23 | 12, 22 | impbida 560 | . 2 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = ∪ ◡{𝑥}) ↔ (𝑦 ∈ ◡𝐴 ∧ 𝑥 = ∪ ◡{𝑦}))) |
24 | 1, 6, 11, 23 | f1od 5723 | 1 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 ↦ ∪ ◡{𝑥}):𝐴–1-1-onto→◡𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 {csn 3398 ∪ cuni 3601 ↦ cmpt 3839 ◡ccnv 4362 Rel wrel 4368 –1-1-onto→wf1o 4921 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-1st 5787 df-2nd 5788 |
This theorem is referenced by: tposf12 5907 cnven 6311 xpcomf1o 6322 |
Copyright terms: Public domain | W3C validator |