MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ssc Structured version   Visualization version   Unicode version

Theorem 0ssc 16497
Description: For any category  C, the empty set is a subcategory subset of  C. (Contributed by AV, 23-Apr-2020.)
Assertion
Ref Expression
0ssc  |-  ( C  e.  Cat  ->  (/)  C_cat  ( Hom f  `  C ) )

Proof of Theorem 0ssc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 3972 . . 3  |-  (/)  C_  ( Base `  C )
21a1i 11 . 2  |-  ( C  e.  Cat  ->  (/)  C_  ( Base `  C ) )
3 ral0 4076 . . 3  |-  A. x  e.  (/)  A. y  e.  (/)  ( x (/) y ) 
C_  ( x ( Hom f  `  C ) y )
43a1i 11 . 2  |-  ( C  e.  Cat  ->  A. x  e.  (/)  A. y  e.  (/)  ( x (/) y ) 
C_  ( x ( Hom f  `  C ) y ) )
5 f0 6086 . . . . . 6  |-  (/) : (/) --> (/)
6 ffn 6045 . . . . . 6  |-  ( (/) :
(/) --> (/)  ->  (/)  Fn  (/) )
75, 6ax-mp 5 . . . . 5  |-  (/)  Fn  (/)
8 xp0 5552 . . . . . 6  |-  ( (/)  X.  (/) )  =  (/)
98fneq2i 5986 . . . . 5  |-  ( (/)  Fn  ( (/)  X.  (/) )  <->  (/)  Fn  (/) )
107, 9mpbir 221 . . . 4  |-  (/)  Fn  ( (/) 
X.  (/) )
1110a1i 11 . . 3  |-  ( C  e.  Cat  ->  (/)  Fn  ( (/) 
X.  (/) ) )
12 eqid 2622 . . . . 5  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
13 eqid 2622 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
1412, 13homffn 16353 . . . 4  |-  ( Hom f  `  C )  Fn  (
( Base `  C )  X.  ( Base `  C
) )
1514a1i 11 . . 3  |-  ( C  e.  Cat  ->  ( Hom f  `  C )  Fn  (
( Base `  C )  X.  ( Base `  C
) ) )
16 fvexd 6203 . . 3  |-  ( C  e.  Cat  ->  ( Base `  C )  e. 
_V )
1711, 15, 16isssc 16480 . 2  |-  ( C  e.  Cat  ->  ( (/)  C_cat 
( Hom f  `  C )  <->  ( (/)  C_  ( Base `  C )  /\  A. x  e.  (/)  A. y  e.  (/)  ( x (/) y )  C_  (
x ( Hom f  `  C ) y ) ) ) )
182, 4, 17mpbir2and 957 1  |-  ( C  e.  Cat  ->  (/)  C_cat  ( Hom f  `  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325   Hom f chomf 16327    C_cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-homf 16331  df-ssc 16470
This theorem is referenced by:  0subcat  16498
  Copyright terms: Public domain W3C validator