| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isssc | Structured version Visualization version Unicode version | ||
| Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| isssc.1 |
|
| isssc.2 |
|
| isssc.3 |
|
| Ref | Expression |
|---|---|
| isssc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brssc 16474 |
. . . 4
| |
| 2 | fndm 5990 |
. . . . . . . . . . . 12
| |
| 3 | 2 | adantl 482 |
. . . . . . . . . . 11
|
| 4 | isssc.2 |
. . . . . . . . . . . . 13
| |
| 5 | 4 | adantr 481 |
. . . . . . . . . . . 12
|
| 6 | fndm 5990 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . 11
|
| 8 | 3, 7 | eqtr3d 2658 |
. . . . . . . . . 10
|
| 9 | 8 | dmeqd 5326 |
. . . . . . . . 9
|
| 10 | dmxpid 5345 |
. . . . . . . . 9
| |
| 11 | dmxpid 5345 |
. . . . . . . . 9
| |
| 12 | 9, 10, 11 | 3eqtr3g 2679 |
. . . . . . . 8
|
| 13 | 12 | ex 450 |
. . . . . . 7
|
| 14 | id 22 |
. . . . . . . . . 10
| |
| 15 | 14 | sqxpeqd 5141 |
. . . . . . . . 9
|
| 16 | 15 | fneq2d 5982 |
. . . . . . . 8
|
| 17 | 4, 16 | syl5ibrcom 237 |
. . . . . . 7
|
| 18 | 13, 17 | impbid 202 |
. . . . . 6
|
| 19 | 18 | anbi1d 741 |
. . . . 5
|
| 20 | 19 | exbidv 1850 |
. . . 4
|
| 21 | 1, 20 | syl5bb 272 |
. . 3
|
| 22 | isssc.3 |
. . . 4
| |
| 23 | pweq 4161 |
. . . . . 6
| |
| 24 | 23 | rexeqdv 3145 |
. . . . 5
|
| 25 | 24 | ceqsexgv 3335 |
. . . 4
|
| 26 | 22, 25 | syl 17 |
. . 3
|
| 27 | 21, 26 | bitrd 268 |
. 2
|
| 28 | df-rex 2918 |
. . 3
| |
| 29 | 3anass 1042 |
. . . . . . . 8
| |
| 30 | elixp2 7912 |
. . . . . . . 8
| |
| 31 | vex 3203 |
. . . . . . . . . . . 12
| |
| 32 | 31, 31 | xpex 6962 |
. . . . . . . . . . 11
|
| 33 | fnex 6481 |
. . . . . . . . . . 11
| |
| 34 | 32, 33 | mpan2 707 |
. . . . . . . . . 10
|
| 35 | 34 | adantr 481 |
. . . . . . . . 9
|
| 36 | 35 | pm4.71ri 665 |
. . . . . . . 8
|
| 37 | 29, 30, 36 | 3bitr4i 292 |
. . . . . . 7
|
| 38 | fndm 5990 |
. . . . . . . . . . . . . 14
| |
| 39 | 38 | adantl 482 |
. . . . . . . . . . . . 13
|
| 40 | isssc.1 |
. . . . . . . . . . . . . . 15
| |
| 41 | 40 | adantr 481 |
. . . . . . . . . . . . . 14
|
| 42 | fndm 5990 |
. . . . . . . . . . . . . 14
| |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . 13
|
| 44 | 39, 43 | eqtr3d 2658 |
. . . . . . . . . . . 12
|
| 45 | 44 | dmeqd 5326 |
. . . . . . . . . . 11
|
| 46 | dmxpid 5345 |
. . . . . . . . . . 11
| |
| 47 | dmxpid 5345 |
. . . . . . . . . . 11
| |
| 48 | 45, 46, 47 | 3eqtr3g 2679 |
. . . . . . . . . 10
|
| 49 | 48 | ex 450 |
. . . . . . . . 9
|
| 50 | id 22 |
. . . . . . . . . . . 12
| |
| 51 | 50 | sqxpeqd 5141 |
. . . . . . . . . . 11
|
| 52 | 51 | fneq2d 5982 |
. . . . . . . . . 10
|
| 53 | 40, 52 | syl5ibrcom 237 |
. . . . . . . . 9
|
| 54 | 49, 53 | impbid 202 |
. . . . . . . 8
|
| 55 | 54 | anbi1d 741 |
. . . . . . 7
|
| 56 | 37, 55 | syl5bb 272 |
. . . . . 6
|
| 57 | 56 | anbi2d 740 |
. . . . 5
|
| 58 | an12 838 |
. . . . 5
| |
| 59 | 57, 58 | syl6bb 276 |
. . . 4
|
| 60 | 59 | exbidv 1850 |
. . 3
|
| 61 | 28, 60 | syl5bb 272 |
. 2
|
| 62 | exsimpl 1795 |
. . . . 5
| |
| 63 | isset 3207 |
. . . . 5
| |
| 64 | 62, 63 | sylibr 224 |
. . . 4
|
| 65 | 64 | a1i 11 |
. . 3
|
| 66 | ssexg 4804 |
. . . . . 6
| |
| 67 | 66 | expcom 451 |
. . . . 5
|
| 68 | 22, 67 | syl 17 |
. . . 4
|
| 69 | 68 | adantrd 484 |
. . 3
|
| 70 | 31 | elpw 4164 |
. . . . . . 7
|
| 71 | sseq1 3626 |
. . . . . . 7
| |
| 72 | 70, 71 | syl5bb 272 |
. . . . . 6
|
| 73 | 51 | raleqdv 3144 |
. . . . . . 7
|
| 74 | fvex 6201 |
. . . . . . . . . 10
| |
| 75 | 74 | elpw 4164 |
. . . . . . . . 9
|
| 76 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 77 | df-ov 6653 |
. . . . . . . . . . 11
| |
| 78 | 76, 77 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 79 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 80 | df-ov 6653 |
. . . . . . . . . . 11
| |
| 81 | 79, 80 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 82 | 78, 81 | sseq12d 3634 |
. . . . . . . . 9
|
| 83 | 75, 82 | syl5bb 272 |
. . . . . . . 8
|
| 84 | 83 | ralxp 5263 |
. . . . . . 7
|
| 85 | 73, 84 | syl6bb 276 |
. . . . . 6
|
| 86 | 72, 85 | anbi12d 747 |
. . . . 5
|
| 87 | 86 | ceqsexgv 3335 |
. . . 4
|
| 88 | 87 | a1i 11 |
. . 3
|
| 89 | 65, 69, 88 | pm5.21ndd 369 |
. 2
|
| 90 | 27, 61, 89 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-ixp 7909 df-ssc 16470 |
| This theorem is referenced by: ssc1 16481 ssc2 16482 sscres 16483 ssctr 16485 0ssc 16497 catsubcat 16499 rnghmsscmap2 41973 rnghmsscmap 41974 rhmsscmap2 42019 rhmsscmap 42020 rhmsscrnghm 42026 srhmsubc 42076 fldhmsubc 42084 srhmsubcALTV 42094 fldhmsubcALTV 42102 |
| Copyright terms: Public domain | W3C validator |