MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssc Structured version   Visualization version   Unicode version

Theorem isssc 16480
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
isssc.2  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
isssc.3  |-  ( ph  ->  T  e.  V )
Assertion
Ref Expression
isssc  |-  ( ph  ->  ( H  C_cat  J  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) )
Distinct variable groups:    x, y, H    x, J, y    x, S, y
Allowed substitution hints:    ph( x, y)    T( x, y)    V( x, y)

Proof of Theorem isssc
Dummy variables  t 
s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brssc 16474 . . . 4  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) ) )
2 fndm 5990 . . . . . . . . . . . 12  |-  ( J  Fn  ( t  X.  t )  ->  dom  J  =  ( t  X.  t ) )
32adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  J  =  ( t  X.  t ) )
4 isssc.2 . . . . . . . . . . . . 13  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
54adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  J  Fn  ( T  X.  T
) )
6 fndm 5990 . . . . . . . . . . . 12  |-  ( J  Fn  ( T  X.  T )  ->  dom  J  =  ( T  X.  T ) )
75, 6syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  J  =  ( T  X.  T ) )
83, 7eqtr3d 2658 . . . . . . . . . 10  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  (
t  X.  t )  =  ( T  X.  T ) )
98dmeqd 5326 . . . . . . . . 9  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  ( t  X.  t
)  =  dom  ( T  X.  T ) )
10 dmxpid 5345 . . . . . . . . 9  |-  dom  (
t  X.  t )  =  t
11 dmxpid 5345 . . . . . . . . 9  |-  dom  ( T  X.  T )  =  T
129, 10, 113eqtr3g 2679 . . . . . . . 8  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  t  =  T )
1312ex 450 . . . . . . 7  |-  ( ph  ->  ( J  Fn  (
t  X.  t )  ->  t  =  T ) )
14 id 22 . . . . . . . . . 10  |-  ( t  =  T  ->  t  =  T )
1514sqxpeqd 5141 . . . . . . . . 9  |-  ( t  =  T  ->  (
t  X.  t )  =  ( T  X.  T ) )
1615fneq2d 5982 . . . . . . . 8  |-  ( t  =  T  ->  ( J  Fn  ( t  X.  t )  <->  J  Fn  ( T  X.  T
) ) )
174, 16syl5ibrcom 237 . . . . . . 7  |-  ( ph  ->  ( t  =  T  ->  J  Fn  (
t  X.  t ) ) )
1813, 17impbid 202 . . . . . 6  |-  ( ph  ->  ( J  Fn  (
t  X.  t )  <-> 
t  =  T ) )
1918anbi1d 741 . . . . 5  |-  ( ph  ->  ( ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) )  <->  ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) ) )
2019exbidv 1850 . . . 4  |-  ( ph  ->  ( E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) )  <->  E. t ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) ) )
211, 20syl5bb 272 . . 3  |-  ( ph  ->  ( H  C_cat  J  <->  E. t
( t  =  T  /\  E. s  e. 
~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) ) )
22 isssc.3 . . . 4  |-  ( ph  ->  T  e.  V )
23 pweq 4161 . . . . . 6  |-  ( t  =  T  ->  ~P t  =  ~P T
)
2423rexeqdv 3145 . . . . 5  |-  ( t  =  T  ->  ( E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z )  <->  E. s  e.  ~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) )
2524ceqsexgv 3335 . . . 4  |-  ( T  e.  V  ->  ( E. t ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) )  <->  E. s  e.  ~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) )
2622, 25syl 17 . . 3  |-  ( ph  ->  ( E. t ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) )  <->  E. s  e.  ~P  T H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) ) )
2721, 26bitrd 268 . 2  |-  ( ph  ->  ( H  C_cat  J  <->  E. s  e.  ~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) )
28 df-rex 2918 . . 3  |-  ( E. s  e.  ~P  T H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z )  <->  E. s
( s  e.  ~P T  /\  H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )
) )
29 3anass 1042 . . . . . . . 8  |-  ( ( H  e.  _V  /\  H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `
 z )  e. 
~P ( J `  z ) )  <->  ( H  e.  _V  /\  ( H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `
 z )  e. 
~P ( J `  z ) ) ) )
30 elixp2 7912 . . . . . . . 8  |-  ( H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )  <->  ( H  e.  _V  /\  H  Fn  ( s  X.  s
)  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )
31 vex 3203 . . . . . . . . . . . 12  |-  s  e. 
_V
3231, 31xpex 6962 . . . . . . . . . . 11  |-  ( s  X.  s )  e. 
_V
33 fnex 6481 . . . . . . . . . . 11  |-  ( ( H  Fn  ( s  X.  s )  /\  ( s  X.  s
)  e.  _V )  ->  H  e.  _V )
3432, 33mpan2 707 . . . . . . . . . 10  |-  ( H  Fn  ( s  X.  s )  ->  H  e.  _V )
3534adantr 481 . . . . . . . . 9  |-  ( ( H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) )  ->  H  e.  _V )
3635pm4.71ri 665 . . . . . . . 8  |-  ( ( H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) )  <-> 
( H  e.  _V  /\  ( H  Fn  (
s  X.  s )  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) ) )
3729, 30, 363bitr4i 292 . . . . . . 7  |-  ( H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )  <->  ( H  Fn  ( s  X.  s
)  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )
38 fndm 5990 . . . . . . . . . . . . . 14  |-  ( H  Fn  ( s  X.  s )  ->  dom  H  =  ( s  X.  s ) )
3938adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  dom  H  =  ( s  X.  s ) )
40 isssc.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
4140adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  H  Fn  ( S  X.  S
) )
42 fndm 5990 . . . . . . . . . . . . . 14  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
4341, 42syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  dom  H  =  ( S  X.  S ) )
4439, 43eqtr3d 2658 . . . . . . . . . . . 12  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  (
s  X.  s )  =  ( S  X.  S ) )
4544dmeqd 5326 . . . . . . . . . . 11  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  dom  ( s  X.  s
)  =  dom  ( S  X.  S ) )
46 dmxpid 5345 . . . . . . . . . . 11  |-  dom  (
s  X.  s )  =  s
47 dmxpid 5345 . . . . . . . . . . 11  |-  dom  ( S  X.  S )  =  S
4845, 46, 473eqtr3g 2679 . . . . . . . . . 10  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  s  =  S )
4948ex 450 . . . . . . . . 9  |-  ( ph  ->  ( H  Fn  (
s  X.  s )  ->  s  =  S ) )
50 id 22 . . . . . . . . . . . 12  |-  ( s  =  S  ->  s  =  S )
5150sqxpeqd 5141 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
s  X.  s )  =  ( S  X.  S ) )
5251fneq2d 5982 . . . . . . . . . 10  |-  ( s  =  S  ->  ( H  Fn  ( s  X.  s )  <->  H  Fn  ( S  X.  S
) ) )
5340, 52syl5ibrcom 237 . . . . . . . . 9  |-  ( ph  ->  ( s  =  S  ->  H  Fn  (
s  X.  s ) ) )
5449, 53impbid 202 . . . . . . . 8  |-  ( ph  ->  ( H  Fn  (
s  X.  s )  <-> 
s  =  S ) )
5554anbi1d 741 . . . . . . 7  |-  ( ph  ->  ( ( H  Fn  ( s  X.  s
)  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) )  <->  ( s  =  S  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) ) )
5637, 55syl5bb 272 . . . . . 6  |-  ( ph  ->  ( H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )  <->  ( s  =  S  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) ) )
5756anbi2d 740 . . . . 5  |-  ( ph  ->  ( ( s  e. 
~P T  /\  H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z ) )  <->  ( s  e.  ~P T  /\  (
s  =  S  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) ) ) )
58 an12 838 . . . . 5  |-  ( ( s  e.  ~P T  /\  ( s  =  S  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  <->  ( s  =  S  /\  (
s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )
) ) )
5957, 58syl6bb 276 . . . 4  |-  ( ph  ->  ( ( s  e. 
~P T  /\  H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z ) )  <->  ( s  =  S  /\  (
s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )
) ) ) )
6059exbidv 1850 . . 3  |-  ( ph  ->  ( E. s ( s  e.  ~P T  /\  H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) )  <->  E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) ) ) )
6128, 60syl5bb 272 . 2  |-  ( ph  ->  ( E. s  e. 
~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z )  <->  E. s
( s  =  S  /\  ( s  e. 
~P T  /\  A. z  e.  ( s  X.  s ) ( H `
 z )  e. 
~P ( J `  z ) ) ) ) )
62 exsimpl 1795 . . . . 5  |-  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) )  ->  E. s 
s  =  S )
63 isset 3207 . . . . 5  |-  ( S  e.  _V  <->  E. s 
s  =  S )
6462, 63sylibr 224 . . . 4  |-  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) )  ->  S  e.  _V )
6564a1i 11 . . 3  |-  ( ph  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  ->  S  e.  _V ) )
66 ssexg 4804 . . . . . 6  |-  ( ( S  C_  T  /\  T  e.  V )  ->  S  e.  _V )
6766expcom 451 . . . . 5  |-  ( T  e.  V  ->  ( S  C_  T  ->  S  e.  _V ) )
6822, 67syl 17 . . . 4  |-  ( ph  ->  ( S  C_  T  ->  S  e.  _V )
)
6968adantrd 484 . . 3  |-  ( ph  ->  ( ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  (
x J y ) )  ->  S  e.  _V ) )
7031elpw 4164 . . . . . . 7  |-  ( s  e.  ~P T  <->  s  C_  T )
71 sseq1 3626 . . . . . . 7  |-  ( s  =  S  ->  (
s  C_  T  <->  S  C_  T
) )
7270, 71syl5bb 272 . . . . . 6  |-  ( s  =  S  ->  (
s  e.  ~P T  <->  S 
C_  T ) )
7351raleqdv 3144 . . . . . . 7  |-  ( s  =  S  ->  ( A. z  e.  (
s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )  <->  A. z  e.  ( S  X.  S ) ( H `  z )  e.  ~P ( J `
 z ) ) )
74 fvex 6201 . . . . . . . . . 10  |-  ( H `
 z )  e. 
_V
7574elpw 4164 . . . . . . . . 9  |-  ( ( H `  z )  e.  ~P ( J `
 z )  <->  ( H `  z )  C_  ( J `  z )
)
76 fveq2 6191 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( H `  <. x ,  y >. )
)
77 df-ov 6653 . . . . . . . . . . 11  |-  ( x H y )  =  ( H `  <. x ,  y >. )
7876, 77syl6eqr 2674 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( x H y ) )
79 fveq2 6191 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( J `  z )  =  ( J `  <. x ,  y >. )
)
80 df-ov 6653 . . . . . . . . . . 11  |-  ( x J y )  =  ( J `  <. x ,  y >. )
8179, 80syl6eqr 2674 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( J `  z )  =  ( x J y ) )
8278, 81sseq12d 3634 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( ( H `
 z )  C_  ( J `  z )  <-> 
( x H y )  C_  ( x J y ) ) )
8375, 82syl5bb 272 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( ( H `
 z )  e. 
~P ( J `  z )  <->  ( x H y )  C_  ( x J y ) ) )
8483ralxp 5263 . . . . . . 7  |-  ( A. z  e.  ( S  X.  S ) ( H `
 z )  e. 
~P ( J `  z )  <->  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) )
8573, 84syl6bb 276 . . . . . 6  |-  ( s  =  S  ->  ( A. z  e.  (
s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )  <->  A. x  e.  S  A. y  e.  S  (
x H y ) 
C_  ( x J y ) ) )
8672, 85anbi12d 747 . . . . 5  |-  ( s  =  S  ->  (
( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  (
x J y ) ) ) )
8786ceqsexgv 3335 . . . 4  |-  ( S  e.  _V  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  (
x J y ) ) ) )
8887a1i 11 . . 3  |-  ( ph  ->  ( S  e.  _V  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) ) )
8965, 69, 88pm5.21ndd 369 . 2  |-  ( ph  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) )
9027, 61, 893bitrd 294 1  |-  ( ph  ->  ( H  C_cat  J  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   X_cixp 7908    C_cat cssc 16467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ixp 7909  df-ssc 16470
This theorem is referenced by:  ssc1  16481  ssc2  16482  sscres  16483  ssctr  16485  0ssc  16497  catsubcat  16499  rnghmsscmap2  41973  rnghmsscmap  41974  rhmsscmap2  42019  rhmsscmap  42020  rhmsscrnghm  42026  srhmsubc  42076  fldhmsubc  42084  srhmsubcALTV  42094  fldhmsubcALTV  42102
  Copyright terms: Public domain W3C validator