MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stdm Structured version   Visualization version   Unicode version

Theorem 1stdm 7215
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 5121 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 206 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32sselda 3603 . . 3  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  ( _V  X.  _V ) )
4 1stval2 7185 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
53, 4syl 17 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  = 
|^| |^| A )
6 elreldm 5350 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  |^| |^| A  e.  dom  R )
75, 6eqeltrd 2701 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  ( 1st `  A )  e. 
dom  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   |^|cint 4475    X. cxp 5112   dom cdm 5114   Rel wrel 5119   ` cfv 5888   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168
This theorem is referenced by:  frxp  7287  dprd2dlem2  18439  dprd2da  18441  gsummpt2d  29781
  Copyright terms: Public domain W3C validator