MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2da Structured version   Visualization version   Unicode version

Theorem dprd2da 18441
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1  |-  ( ph  ->  Rel  A )
dprd2d.2  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
dprd2d.3  |-  ( ph  ->  dom  A  C_  I
)
dprd2d.4  |-  ( (
ph  /\  i  e.  I )  ->  G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )
dprd2d.5  |-  ( ph  ->  G dom DProd  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )
dprd2d.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dprd2da  |-  ( ph  ->  G dom DProd  S )
Distinct variable groups:    i, j, A    i, G, j    i, I    i, K    ph, i, j    S, i, j
Allowed substitution hints:    I( j)    K( j)

Proof of Theorem dprd2da
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2622 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 dprd2d.k . 2  |-  K  =  (mrCls `  (SubGrp `  G
) )
4 dprd2d.5 . . 3  |-  ( ph  ->  G dom DProd  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )
5 dprdgrp 18404 . . 3  |-  ( G dom DProd  ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  ->  G  e.  Grp )
64, 5syl 17 . 2  |-  ( ph  ->  G  e.  Grp )
7 resiun2 5418 . . . . 5  |-  ( A  |`  U_ i  e.  I  { i } )  =  U_ i  e.  I  ( A  |`  { i } )
8 iunid 4575 . . . . . 6  |-  U_ i  e.  I  { i }  =  I
98reseq2i 5393 . . . . 5  |-  ( A  |`  U_ i  e.  I  { i } )  =  ( A  |`  I )
107, 9eqtr3i 2646 . . . 4  |-  U_ i  e.  I  ( A  |` 
{ i } )  =  ( A  |`  I )
11 dprd2d.1 . . . . 5  |-  ( ph  ->  Rel  A )
12 dprd2d.3 . . . . 5  |-  ( ph  ->  dom  A  C_  I
)
13 relssres 5437 . . . . 5  |-  ( ( Rel  A  /\  dom  A 
C_  I )  -> 
( A  |`  I )  =  A )
1411, 12, 13syl2anc 693 . . . 4  |-  ( ph  ->  ( A  |`  I )  =  A )
1510, 14syl5eq 2668 . . 3  |-  ( ph  ->  U_ i  e.  I 
( A  |`  { i } )  =  A )
16 ovex 6678 . . . . . 6  |-  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) )  e.  _V
17 eqid 2622 . . . . . 6  |-  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  =  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )
1816, 17dmmpti 6023 . . . . 5  |-  dom  (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  =  I
19 reldmdprd 18396 . . . . . . 7  |-  Rel  dom DProd
2019brrelex2i 5159 . . . . . 6  |-  ( G dom DProd  ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  ->  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  e.  _V )
21 dmexg 7097 . . . . . 6  |-  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  e. 
_V  ->  dom  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  e.  _V )
224, 20, 213syl 18 . . . . 5  |-  ( ph  ->  dom  ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  e.  _V )
2318, 22syl5eqelr 2706 . . . 4  |-  ( ph  ->  I  e.  _V )
24 ressn 5671 . . . . . 6  |-  ( A  |`  { i } )  =  ( { i }  X.  ( A
" { i } ) )
25 snex 4908 . . . . . . 7  |-  { i }  e.  _V
26 ovex 6678 . . . . . . . . 9  |-  ( i S j )  e. 
_V
27 eqid 2622 . . . . . . . . 9  |-  ( j  e.  ( A " { i } ) 
|->  ( i S j ) )  =  ( j  e.  ( A
" { i } )  |->  ( i S j ) )
2826, 27dmmpti 6023 . . . . . . . 8  |-  dom  (
j  e.  ( A
" { i } )  |->  ( i S j ) )  =  ( A " {
i } )
29 dprd2d.4 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  I )  ->  G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )
3019brrelex2i 5159 . . . . . . . . 9  |-  ( G dom DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  ->  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  e.  _V )
31 dmexg 7097 . . . . . . . . 9  |-  ( ( j  e.  ( A
" { i } )  |->  ( i S j ) )  e. 
_V  ->  dom  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  e.  _V )
3229, 30, 313syl 18 . . . . . . . 8  |-  ( (
ph  /\  i  e.  I )  ->  dom  ( j  e.  ( A " { i } )  |->  ( i S j ) )  e.  _V )
3328, 32syl5eqelr 2706 . . . . . . 7  |-  ( (
ph  /\  i  e.  I )  ->  ( A " { i } )  e.  _V )
34 xpexg 6960 . . . . . . 7  |-  ( ( { i }  e.  _V  /\  ( A " { i } )  e.  _V )  -> 
( { i }  X.  ( A " { i } ) )  e.  _V )
3525, 33, 34sylancr 695 . . . . . 6  |-  ( (
ph  /\  i  e.  I )  ->  ( { i }  X.  ( A " { i } ) )  e. 
_V )
3624, 35syl5eqel 2705 . . . . 5  |-  ( (
ph  /\  i  e.  I )  ->  ( A  |`  { i } )  e.  _V )
3736ralrimiva 2966 . . . 4  |-  ( ph  ->  A. i  e.  I 
( A  |`  { i } )  e.  _V )
38 iunexg 7143 . . . 4  |-  ( ( I  e.  _V  /\  A. i  e.  I  ( A  |`  { i } )  e.  _V )  ->  U_ i  e.  I 
( A  |`  { i } )  e.  _V )
3923, 37, 38syl2anc 693 . . 3  |-  ( ph  ->  U_ i  e.  I 
( A  |`  { i } )  e.  _V )
4015, 39eqeltrrd 2702 . 2  |-  ( ph  ->  A  e.  _V )
41 dprd2d.2 . 2  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
4212adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  dom  A 
C_  I )
43 1stdm 7215 . . . . . . . . . 10  |-  ( ( Rel  A  /\  x  e.  A )  ->  ( 1st `  x )  e. 
dom  A )
4411, 43sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( 1st `  x )  e. 
dom  A )
4542, 44sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( 1st `  x )  e.  I )
4629ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. i  e.  I  G dom DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) )
4746adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  A. i  e.  I  G dom DProd  ( j  e.  ( A
" { i } )  |->  ( i S j ) ) )
48 sneq 4187 . . . . . . . . . . . 12  |-  ( i  =  ( 1st `  x
)  ->  { i }  =  { ( 1st `  x ) } )
4948imaeq2d 5466 . . . . . . . . . . 11  |-  ( i  =  ( 1st `  x
)  ->  ( A " { i } )  =  ( A " { ( 1st `  x
) } ) )
50 oveq1 6657 . . . . . . . . . . 11  |-  ( i  =  ( 1st `  x
)  ->  ( i S j )  =  ( ( 1st `  x
) S j ) )
5149, 50mpteq12dv 4733 . . . . . . . . . 10  |-  ( i  =  ( 1st `  x
)  ->  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  =  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
5251breq2d 4665 . . . . . . . . 9  |-  ( i  =  ( 1st `  x
)  ->  ( G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) )  <-> 
G dom DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
5352rspcv 3305 . . . . . . . 8  |-  ( ( 1st `  x )  e.  I  ->  ( A. i  e.  I  G dom DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  ->  G dom DProd  ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) )
5445, 47, 53sylc 65 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  G dom DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )
55543ad2antr1 1226 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  G dom DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
5655adantr 481 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  ->  G dom DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
57 ovex 6678 . . . . . . 7  |-  ( ( 1st `  x ) S j )  e. 
_V
58 eqid 2622 . . . . . . 7  |-  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  =  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )
5957, 58dmmpti 6023 . . . . . 6  |-  dom  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) )  =  ( A
" { ( 1st `  x ) } )
6059a1i 11 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  ->  dom  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  =  ( A " { ( 1st `  x
) } ) )
61 1st2nd 7214 . . . . . . . . . . 11  |-  ( ( Rel  A  /\  x  e.  A )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
6211, 61sylan 488 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
63 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
6462, 63eqeltrrd 2702 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  A )
65 df-br 4654 . . . . . . . . 9  |-  ( ( 1st `  x ) A ( 2nd `  x
)  <->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  A
)
6664, 65sylibr 224 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( 1st `  x ) A ( 2nd `  x
) )
6711adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  Rel  A )
68 elrelimasn 5489 . . . . . . . . 9  |-  ( Rel 
A  ->  ( ( 2nd `  x )  e.  ( A " {
( 1st `  x
) } )  <->  ( 1st `  x ) A ( 2nd `  x ) ) )
6967, 68syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( 2nd `  x
)  e.  ( A
" { ( 1st `  x ) } )  <-> 
( 1st `  x
) A ( 2nd `  x ) ) )
7066, 69mpbird 247 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( 2nd `  x )  e.  ( A " {
( 1st `  x
) } ) )
71703ad2antr1 1226 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( 2nd `  x
)  e.  ( A
" { ( 1st `  x ) } ) )
7271adantr 481 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( 2nd `  x
)  e.  ( A
" { ( 1st `  x ) } ) )
7311adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  Rel  A )
74 simpr2 1068 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
y  e.  A )
75 1st2nd 7214 . . . . . . . . . . 11  |-  ( ( Rel  A  /\  y  e.  A )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
7673, 74, 75syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
7776, 74eqeltrrd 2702 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  A
)
78 df-br 4654 . . . . . . . . 9  |-  ( ( 1st `  y ) A ( 2nd `  y
)  <->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  A
)
7977, 78sylibr 224 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( 1st `  y
) A ( 2nd `  y ) )
80 elrelimasn 5489 . . . . . . . . 9  |-  ( Rel 
A  ->  ( ( 2nd `  y )  e.  ( A " {
( 1st `  y
) } )  <->  ( 1st `  y ) A ( 2nd `  y ) ) )
8173, 80syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( 2nd `  y
)  e.  ( A
" { ( 1st `  y ) } )  <-> 
( 1st `  y
) A ( 2nd `  y ) ) )
8279, 81mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( 2nd `  y
)  e.  ( A
" { ( 1st `  y ) } ) )
8382adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( 2nd `  y
)  e.  ( A
" { ( 1st `  y ) } ) )
84 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( 1st `  x
)  =  ( 1st `  y ) )
8584sneqd 4189 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  ->  { ( 1st `  x
) }  =  {
( 1st `  y
) } )
8685imaeq2d 5466 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( A " {
( 1st `  x
) } )  =  ( A " {
( 1st `  y
) } ) )
8783, 86eleqtrrd 2704 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( 2nd `  y
)  e.  ( A
" { ( 1st `  x ) } ) )
88 simplr3 1105 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  ->  x  =/=  y )
89 simpr1 1067 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  x  e.  A )
9073, 89, 61syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
9190, 76eqeq12d 2637 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( x  =  y  <->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. ) )
92 fvex 6201 . . . . . . . . . 10  |-  ( 1st `  x )  e.  _V
93 fvex 6201 . . . . . . . . . 10  |-  ( 2nd `  x )  e.  _V
9492, 93opth 4945 . . . . . . . . 9  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. 
<->  ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
9591, 94syl6bb 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( x  =  y  <-> 
( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) ) )
9695baibd 948 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( x  =  y  <-> 
( 2nd `  x
)  =  ( 2nd `  y ) ) )
9796necon3bid 2838 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( x  =/=  y  <->  ( 2nd `  x )  =/=  ( 2nd `  y
) ) )
9888, 97mpbid 222 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( 2nd `  x
)  =/=  ( 2nd `  y ) )
9956, 60, 72, 87, 98, 1dprdcntz 18407 . . . 4  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  C_  ( (Cntz `  G ) `  ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  y ) ) ) )
100 df-ov 6653 . . . . . 6  |-  ( ( 1st `  x ) S ( 2nd `  x
) )  =  ( S `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
101 oveq2 6658 . . . . . . . 8  |-  ( j  =  ( 2nd `  x
)  ->  ( ( 1st `  x ) S j )  =  ( ( 1st `  x
) S ( 2nd `  x ) ) )
102101, 58, 57fvmpt3i 6287 . . . . . . 7  |-  ( ( 2nd `  x )  e.  ( A " { ( 1st `  x
) } )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  =  ( ( 1st `  x
) S ( 2nd `  x ) ) )
10371, 102syl 17 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  =  ( ( 1st `  x
) S ( 2nd `  x ) ) )
10490fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( S `  x
)  =  ( S `
 <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
105100, 103, 1043eqtr4a 2682 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  =  ( S `  x
) )
106105adantr 481 . . . 4  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  =  ( S `  x
) )
10784oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( ( 1st `  x
) S j )  =  ( ( 1st `  y ) S j ) )
10886, 107mpteq12dv 4733 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  =  ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) )
109108fveq1d 6193 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  y ) )  =  ( ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) `  ( 2nd `  y ) ) )
110 df-ov 6653 . . . . . . . 8  |-  ( ( 1st `  y ) S ( 2nd `  y
) )  =  ( S `  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
111 oveq2 6658 . . . . . . . . . 10  |-  ( j  =  ( 2nd `  y
)  ->  ( ( 1st `  y ) S j )  =  ( ( 1st `  y
) S ( 2nd `  y ) ) )
112 eqid 2622 . . . . . . . . . 10  |-  ( j  e.  ( A " { ( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) )  =  ( j  e.  ( A " { ( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) )
113 ovex 6678 . . . . . . . . . 10  |-  ( ( 1st `  y ) S j )  e. 
_V
114111, 112, 113fvmpt3i 6287 . . . . . . . . 9  |-  ( ( 2nd `  y )  e.  ( A " { ( 1st `  y
) } )  -> 
( ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) `  ( 2nd `  y ) )  =  ( ( 1st `  y
) S ( 2nd `  y ) ) )
11582, 114syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) `  ( 2nd `  y ) )  =  ( ( 1st `  y
) S ( 2nd `  y ) ) )
11676fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( S `  y
)  =  ( S `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
117110, 115, 1163eqtr4a 2682 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) `  ( 2nd `  y ) )  =  ( S `  y
) )
118117adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) `  ( 2nd `  y ) )  =  ( S `  y
) )
119109, 118eqtrd 2656 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  y ) )  =  ( S `  y
) )
120119fveq2d 6195 . . . 4  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( (Cntz `  G
) `  ( (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  y ) ) )  =  ( (Cntz `  G ) `  ( S `  y )
) )
12199, 106, 1203sstr3d 3647 . . 3  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =  ( 1st `  y ) )  -> 
( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
) )
12211, 41, 12, 29, 4, 3dprd2dlem2 18439 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
12351oveq2d 6666 . . . . . . . . 9  |-  ( i  =  ( 1st `  x
)  ->  ( G DProd  ( j  e.  ( A
" { i } )  |->  ( i S j ) ) )  =  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) )
124123, 17, 16fvmpt3i 6287 . . . . . . . 8  |-  ( ( 1st `  x )  e.  I  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) `
 ( 1st `  x
) )  =  ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
12545, 124syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) `
 ( 1st `  x
) )  =  ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
126122, 125sseqtr4d 3642 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  C_  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) ) )
1271263ad2antr1 1226 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) ) )
128127adantr 481 . . . 4  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( S `  x
)  C_  ( (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) ) )
1294ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  ->  G dom DProd  ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) )
13018a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  ->  dom  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  =  I )
131453ad2antr1 1226 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( 1st `  x
)  e.  I )
132131adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( 1st `  x
)  e.  I )
13312adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  dom  A  C_  I )
134 1stdm 7215 . . . . . . . . 9  |-  ( ( Rel  A  /\  y  e.  A )  ->  ( 1st `  y )  e. 
dom  A )
13573, 74, 134syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( 1st `  y
)  e.  dom  A
)
136133, 135sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( 1st `  y
)  e.  I )
137136adantr 481 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( 1st `  y
)  e.  I )
138 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( 1st `  x
)  =/=  ( 1st `  y ) )
139129, 130, 132, 137, 138, 1dprdcntz 18407 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )  C_  ( (Cntz `  G ) `  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  y ) ) ) )
140 sneq 4187 . . . . . . . . . . . . 13  |-  ( i  =  ( 1st `  y
)  ->  { i }  =  { ( 1st `  y ) } )
141140imaeq2d 5466 . . . . . . . . . . . 12  |-  ( i  =  ( 1st `  y
)  ->  ( A " { i } )  =  ( A " { ( 1st `  y
) } ) )
142 oveq1 6657 . . . . . . . . . . . 12  |-  ( i  =  ( 1st `  y
)  ->  ( i S j )  =  ( ( 1st `  y
) S j ) )
143141, 142mpteq12dv 4733 . . . . . . . . . . 11  |-  ( i  =  ( 1st `  y
)  ->  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  =  ( j  e.  ( A " { ( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) )
144143oveq2d 6666 . . . . . . . . . 10  |-  ( i  =  ( 1st `  y
)  ->  ( G DProd  ( j  e.  ( A
" { i } )  |->  ( i S j ) ) )  =  ( G DProd  (
j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) ) ) )
145144, 17, 16fvmpt3i 6287 . . . . . . . . 9  |-  ( ( 1st `  y )  e.  I  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) `
 ( 1st `  y
) )  =  ( G DProd  ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) ) )
146136, 145syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  y ) )  =  ( G DProd  ( j  e.  ( A " { ( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) ) )
147146fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  y ) ) )  =  ( (Cntz `  G ) `  ( G DProd  ( j  e.  ( A " { ( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) ) ) )
148 eqid 2622 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
149148dprdssv 18415 . . . . . . . 8  |-  ( G DProd 
( j  e.  ( A " { ( 1st `  y ) } )  |->  ( ( 1st `  y ) S j ) ) )  C_  ( Base `  G )
15046adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  A. i  e.  I  G dom DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) )
151143breq2d 4665 . . . . . . . . . . . 12  |-  ( i  =  ( 1st `  y
)  ->  ( G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) )  <-> 
G dom DProd  ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) ) )
152151rspcv 3305 . . . . . . . . . . 11  |-  ( ( 1st `  y )  e.  I  ->  ( A. i  e.  I  G dom DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) )  ->  G dom DProd  ( j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) ) ) )
153136, 150, 152sylc 65 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  G dom DProd  ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) )
154113, 112dmmpti 6023 . . . . . . . . . . 11  |-  dom  (
j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) )  =  ( A
" { ( 1st `  y ) } )
155154a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  ->  dom  ( j  e.  ( A " { ( 1st `  y ) } )  |->  ( ( 1st `  y ) S j ) )  =  ( A " { ( 1st `  y
) } ) )
156153, 155, 82dprdub 18424 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) `  ( 2nd `  y ) )  C_  ( G DProd  ( j  e.  ( A " {
( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) ) )
157117, 156eqsstr3d 3640 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( S `  y
)  C_  ( G DProd  ( j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) ) ) )
158148, 1cntz2ss 17765 . . . . . . . 8  |-  ( ( ( G DProd  ( j  e.  ( A " { ( 1st `  y
) } )  |->  ( ( 1st `  y
) S j ) ) )  C_  ( Base `  G )  /\  ( S `  y ) 
C_  ( G DProd  (
j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) ) ) )  -> 
( (Cntz `  G
) `  ( G DProd  ( j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) ) ) )  C_  ( (Cntz `  G ) `  ( S `  y
) ) )
159149, 157, 158sylancr 695 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( G DProd  ( j  e.  ( A
" { ( 1st `  y ) } ) 
|->  ( ( 1st `  y
) S j ) ) ) )  C_  ( (Cntz `  G ) `  ( S `  y
) ) )
160147, 159eqsstrd 3639 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( (Cntz `  G
) `  ( (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  y ) ) )  C_  (
(Cntz `  G ) `  ( S `  y
) ) )
161160adantr 481 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( (Cntz `  G
) `  ( (
i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  y ) ) )  C_  (
(Cntz `  G ) `  ( S `  y
) ) )
162139, 161sstrd 3613 . . . 4  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )  C_  ( (Cntz `  G ) `  ( S `  y
) ) )
163128, 162sstrd 3613 . . 3  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  /\  ( 1st `  x
)  =/=  ( 1st `  y ) )  -> 
( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
) )
164121, 163pm2.61dane 2881 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
) )
1656adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  G  e.  Grp )
166148subgacs 17629 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
167 acsmre 16313 . . . . . 6  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
168165, 166, 1673syl 18 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
16914adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( A  |`  I )  =  A )
170 undif2 4044 . . . . . . . . . . . . . . . . . 18  |-  ( { ( 1st `  x
) }  u.  (
I  \  { ( 1st `  x ) } ) )  =  ( { ( 1st `  x
) }  u.  I
)
17145snssd 4340 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  { ( 1st `  x ) }  C_  I )
172 ssequn1 3783 . . . . . . . . . . . . . . . . . . 19  |-  ( { ( 1st `  x
) }  C_  I  <->  ( { ( 1st `  x
) }  u.  I
)  =  I )
173171, 172sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  ( { ( 1st `  x
) }  u.  I
)  =  I )
174170, 173syl5req 2669 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  I  =  ( { ( 1st `  x ) }  u.  ( I 
\  { ( 1st `  x ) } ) ) )
175174reseq2d 5396 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( A  |`  I )  =  ( A  |`  ( { ( 1st `  x
) }  u.  (
I  \  { ( 1st `  x ) } ) ) ) )
176169, 175eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  A  =  ( A  |`  ( { ( 1st `  x
) }  u.  (
I  \  { ( 1st `  x ) } ) ) ) )
177 resundi 5410 . . . . . . . . . . . . . . 15  |-  ( A  |`  ( { ( 1st `  x ) }  u.  ( I  \  { ( 1st `  x ) } ) ) )  =  ( ( A  |`  { ( 1st `  x
) } )  u.  ( A  |`  (
I  \  { ( 1st `  x ) } ) ) )
178176, 177syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  A  =  ( ( A  |`  { ( 1st `  x
) } )  u.  ( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) )
179178difeq1d 3727 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( A  \  { x }
)  =  ( ( ( A  |`  { ( 1st `  x ) } )  u.  ( A  |`  ( I  \  { ( 1st `  x
) } ) ) )  \  { x } ) )
180 difundir 3880 . . . . . . . . . . . . 13  |-  ( ( ( A  |`  { ( 1st `  x ) } )  u.  ( A  |`  ( I  \  { ( 1st `  x
) } ) ) )  \  { x } )  =  ( ( ( A  |`  { ( 1st `  x
) } )  \  { x } )  u.  ( ( A  |`  ( I  \  {
( 1st `  x
) } ) ) 
\  { x }
) )
181179, 180syl6eq 2672 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( A  \  { x }
)  =  ( ( ( A  |`  { ( 1st `  x ) } )  \  {
x } )  u.  ( ( A  |`  ( I  \  { ( 1st `  x ) } ) )  \  { x } ) ) )
182 neirr 2803 . . . . . . . . . . . . . . . . 17  |-  -.  ( 1st `  x )  =/=  ( 1st `  x
)
18362eleq1d 2686 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  ( A  |`  ( I  \  {
( 1st `  x
) } ) )  <->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) )
184 df-br 4654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  x ) ( A  |`  (
I  \  { ( 1st `  x ) } ) ) ( 2nd `  x )  <->  <. ( 1st `  x ) ,  ( 2nd `  x )
>.  e.  ( A  |`  ( I  \  { ( 1st `  x ) } ) ) )
18593brres 5402 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x ) ( A  |`  (
I  \  { ( 1st `  x ) } ) ) ( 2nd `  x )  <->  ( ( 1st `  x ) A ( 2nd `  x
)  /\  ( 1st `  x )  e.  ( I  \  { ( 1st `  x ) } ) ) )
186185simprbi 480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x ) ( A  |`  (
I  \  { ( 1st `  x ) } ) ) ( 2nd `  x )  ->  ( 1st `  x )  e.  ( I  \  {
( 1st `  x
) } ) )
187 eldifsni 4320 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x )  e.  ( I  \  { ( 1st `  x
) } )  -> 
( 1st `  x
)  =/=  ( 1st `  x ) )
188186, 187syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  x ) ( A  |`  (
I  \  { ( 1st `  x ) } ) ) ( 2nd `  x )  ->  ( 1st `  x )  =/=  ( 1st `  x
) )
189184, 188sylbir 225 . . . . . . . . . . . . . . . . . 18  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  ( A  |`  ( I  \  { ( 1st `  x
) } ) )  ->  ( 1st `  x
)  =/=  ( 1st `  x ) )
190183, 189syl6bi 243 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  ( A  |`  ( I  \  {
( 1st `  x
) } ) )  ->  ( 1st `  x
)  =/=  ( 1st `  x ) ) )
191182, 190mtoi 190 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  -.  x  e.  ( A  |`  ( I  \  {
( 1st `  x
) } ) ) )
192 disjsn 4246 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  |`  (
I  \  { ( 1st `  x ) } ) )  i^i  {
x } )  =  (/) 
<->  -.  x  e.  ( A  |`  ( I  \  { ( 1st `  x
) } ) ) )
193191, 192sylibr 224 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  (
( A  |`  (
I  \  { ( 1st `  x ) } ) )  i^i  {
x } )  =  (/) )
194 disj3 4021 . . . . . . . . . . . . . . 15  |-  ( ( ( A  |`  (
I  \  { ( 1st `  x ) } ) )  i^i  {
x } )  =  (/) 
<->  ( A  |`  (
I  \  { ( 1st `  x ) } ) )  =  ( ( A  |`  (
I  \  { ( 1st `  x ) } ) )  \  {
x } ) )
195193, 194sylib 208 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( A  |`  ( I  \  { ( 1st `  x
) } ) )  =  ( ( A  |`  ( I  \  {
( 1st `  x
) } ) ) 
\  { x }
) )
196195eqcomd 2628 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( A  |`  (
I  \  { ( 1st `  x ) } ) )  \  {
x } )  =  ( A  |`  (
I  \  { ( 1st `  x ) } ) ) )
197196uneq2d 3767 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( A  |`  { ( 1st `  x
) } )  \  { x } )  u.  ( ( A  |`  ( I  \  {
( 1st `  x
) } ) ) 
\  { x }
) )  =  ( ( ( A  |`  { ( 1st `  x
) } )  \  { x } )  u.  ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )
198181, 197eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( A  \  { x }
)  =  ( ( ( A  |`  { ( 1st `  x ) } )  \  {
x } )  u.  ( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) )
199198imaeq2d 5466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( A  \  { x } ) )  =  ( S
" ( ( ( A  |`  { ( 1st `  x ) } )  \  { x } )  u.  ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )
200 imaundi 5545 . . . . . . . . . 10  |-  ( S
" ( ( ( A  |`  { ( 1st `  x ) } )  \  { x } )  u.  ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) )  =  ( ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) )  u.  ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) )
201199, 200syl6eq 2672 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( A  \  { x } ) )  =  ( ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) )  u.  ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )
202201unieqd 4446 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( A  \  { x } ) )  =  U. (
( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) )  u.  ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) ) )
203 uniun 4456 . . . . . . . 8  |-  U. (
( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) )  u.  ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) )  =  ( U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  u.  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )
204202, 203syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( A  \  { x } ) )  =  ( U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) )  u. 
U. ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) ) )
205 imassrn 5477 . . . . . . . . . . 11  |-  ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ran  S
206 frn 6053 . . . . . . . . . . . . . 14  |-  ( S : A --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
20741, 206syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
208207adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ran  S 
C_  (SubGrp `  G )
)
209 mresspw 16252 . . . . . . . . . . . . 13  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
210168, 209syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
211208, 210sstrd 3613 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ran  S 
C_  ~P ( Base `  G
) )
212205, 211syl5ss 3614 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ~P ( Base `  G ) )
213 sspwuni 4611 . . . . . . . . . 10  |-  ( ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) )  C_  ~P ( Base `  G
)  <->  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( Base `  G ) )
214212, 213sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( Base `  G ) )
215168, 3, 214mrcssidd 16285 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) )
216 imassrn 5477 . . . . . . . . . . 11  |-  ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) 
C_  ran  S
217216, 211syl5ss 3614 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) 
C_  ~P ( Base `  G
) )
218 sspwuni 4611 . . . . . . . . . 10  |-  ( ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) )  C_  ~P ( Base `  G )  <->  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) 
C_  ( Base `  G
) )
219217, 218sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) 
C_  ( Base `  G
) )
220168, 3, 219mrcssidd 16285 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) 
C_  ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )
221 unss12 3785 . . . . . . . 8  |-  ( ( U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  /\  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) )  C_  ( K `  U. ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) ) )  ->  ( U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) )  u. 
U. ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) ) 
C_  ( ( K `
 U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  u.  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
222215, 220, 221syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) )  u.  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  C_  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  u.  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
223204, 222eqsstrd 3639 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( A  \  { x } ) )  C_  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  u.  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
2243mrccl 16271 . . . . . . . 8  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) 
C_  ( Base `  G
) )  ->  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  e.  (SubGrp `  G ) )
225168, 214, 224syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  e.  (SubGrp `  G ) )
2263mrccl 16271 . . . . . . . 8  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) )  C_  ( Base `  G ) )  -> 
( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) )  e.  (SubGrp `  G ) )
227168, 219, 226syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  e.  (SubGrp `  G ) )
228 eqid 2622 . . . . . . . 8  |-  ( LSSum `  G )  =  (
LSSum `  G )
229228lsmunss 18073 . . . . . . 7  |-  ( ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( K `  U. ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) )  e.  (SubGrp `  G
) )  ->  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  u.  ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )  C_  ( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) ) )
230225, 227, 229syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  u.  ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )  C_  ( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) ) )
231223, 230sstrd 3613 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( A  \  { x } ) )  C_  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( K `
 U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
232 difss 3737 . . . . . . . . . . . . 13  |-  ( ( A  |`  { ( 1st `  x ) } )  \  { x } )  C_  ( A  |`  { ( 1st `  x ) } )
233 ressn 5671 . . . . . . . . . . . . 13  |-  ( A  |`  { ( 1st `  x
) } )  =  ( { ( 1st `  x ) }  X.  ( A " { ( 1st `  x ) } ) )
234232, 233sseqtri 3637 . . . . . . . . . . . 12  |-  ( ( A  |`  { ( 1st `  x ) } )  \  { x } )  C_  ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) )
235 imass2 5501 . . . . . . . . . . . 12  |-  ( ( ( A  |`  { ( 1st `  x ) } )  \  {
x } )  C_  ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) )  ->  ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( S " ( { ( 1st `  x ) }  X.  ( A " { ( 1st `  x ) } ) ) ) )
236234, 235ax-mp 5 . . . . . . . . . . 11  |-  ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( S " ( { ( 1st `  x ) }  X.  ( A " { ( 1st `  x ) } ) ) )
237 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  x ) S i )  e. 
_V
238 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( j  =  i  ->  (
( 1st `  x
) S j )  =  ( ( 1st `  x ) S i ) )
23958, 238elrnmpt1s 5373 . . . . . . . . . . . . . . . 16  |-  ( ( i  e.  ( A
" { ( 1st `  x ) } )  /\  ( ( 1st `  x ) S i )  e.  _V )  ->  ( ( 1st `  x
) S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
240237, 239mpan2 707 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( A " { ( 1st `  x
) } )  -> 
( ( 1st `  x
) S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
241240rgen 2922 . . . . . . . . . . . . . 14  |-  A. i  e.  ( A " {
( 1st `  x
) } ) ( ( 1st `  x
) S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )
242241a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  A. i  e.  ( A " {
( 1st `  x
) } ) ( ( 1st `  x
) S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
243 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( 1st `  x
)  ->  ( y S i )  =  ( ( 1st `  x
) S i ) )
244243eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( y  =  ( 1st `  x
)  ->  ( (
y S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  <->  ( ( 1st `  x ) S i )  e.  ran  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) )
245244ralbidv 2986 . . . . . . . . . . . . . 14  |-  ( y  =  ( 1st `  x
)  ->  ( A. i  e.  ( A " { ( 1st `  x
) } ) ( y S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  <->  A. i  e.  ( A " { ( 1st `  x ) } ) ( ( 1st `  x ) S i )  e. 
ran  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
24692, 245ralsn 4222 . . . . . . . . . . . . 13  |-  ( A. y  e.  { ( 1st `  x ) } A. i  e.  ( A " { ( 1st `  x ) } ) ( y S i )  e. 
ran  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  <->  A. i  e.  ( A " { ( 1st `  x ) } ) ( ( 1st `  x ) S i )  e. 
ran  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
247242, 246sylibr 224 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  { ( 1st `  x
) } A. i  e.  ( A " {
( 1st `  x
) } ) ( y S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
24841adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  S : A --> (SubGrp `  G )
)
249 ffun 6048 . . . . . . . . . . . . . 14  |-  ( S : A --> (SubGrp `  G )  ->  Fun  S )
250248, 249syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  Fun  S )
251 resss 5422 . . . . . . . . . . . . . . 15  |-  ( A  |`  { ( 1st `  x
) } )  C_  A
252233, 251eqsstr3i 3636 . . . . . . . . . . . . . 14  |-  ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) )  C_  A
253 fdm 6051 . . . . . . . . . . . . . . 15  |-  ( S : A --> (SubGrp `  G )  ->  dom  S  =  A )
254248, 253syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  dom  S  =  A )
255252, 254syl5sseqr 3654 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) )  C_  dom  S )
256 funimassov 6811 . . . . . . . . . . . . 13  |-  ( ( Fun  S  /\  ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) )  C_  dom  S )  ->  ( ( S
" ( { ( 1st `  x ) }  X.  ( A
" { ( 1st `  x ) } ) ) )  C_  ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  <->  A. y  e.  { ( 1st `  x ) } A. i  e.  ( A " {
( 1st `  x
) } ) ( y S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
257250, 255, 256syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( S " ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) ) )  C_  ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  <->  A. y  e.  { ( 1st `  x ) } A. i  e.  ( A " {
( 1st `  x
) } ) ( y S i )  e.  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
258247, 257mpbird 247 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( { ( 1st `  x ) }  X.  ( A
" { ( 1st `  x ) } ) ) )  C_  ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )
259236, 258syl5ss 3614 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
260259unissd 4462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  U. ran  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )
261 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( ( 1st `  x ) S j )  =  ( S `  <. ( 1st `  x ) ,  j >. )
26241ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( A " {
( 1st `  x
) } ) )  ->  S : A --> (SubGrp `  G ) )
263 elrelimasn 5489 . . . . . . . . . . . . . . . . . 18  |-  ( Rel 
A  ->  ( j  e.  ( A " {
( 1st `  x
) } )  <->  ( 1st `  x ) A j ) )
26467, 263syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  (
j  e.  ( A
" { ( 1st `  x ) } )  <-> 
( 1st `  x
) A j ) )
265264biimpa 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( A " {
( 1st `  x
) } ) )  ->  ( 1st `  x
) A j )
266 df-br 4654 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  x ) A j  <->  <. ( 1st `  x ) ,  j
>.  e.  A )
267265, 266sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( A " {
( 1st `  x
) } ) )  ->  <. ( 1st `  x
) ,  j >.  e.  A )
268262, 267ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( A " {
( 1st `  x
) } ) )  ->  ( S `  <. ( 1st `  x
) ,  j >.
)  e.  (SubGrp `  G ) )
269261, 268syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  j  e.  ( A " {
( 1st `  x
) } ) )  ->  ( ( 1st `  x ) S j )  e.  (SubGrp `  G ) )
270269, 58fmptd 6385 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) : ( A
" { ( 1st `  x ) } ) --> (SubGrp `  G )
)
271 frn 6053 . . . . . . . . . . . 12  |-  ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) : ( A
" { ( 1st `  x ) } ) --> (SubGrp `  G )  ->  ran  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  C_  (SubGrp `  G
) )
272270, 271syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) 
C_  (SubGrp `  G )
)
273272, 210sstrd 3613 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) 
C_  ~P ( Base `  G
) )
274 sspwuni 4611 . . . . . . . . . 10  |-  ( ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) 
C_  ~P ( Base `  G
)  <->  U. ran  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  C_  ( Base `  G ) )
275273, 274sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  U. ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) 
C_  ( Base `  G
) )
276168, 3, 260, 275mrcssd 16284 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  ( K `  U. ran  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) )
2773dprdspan 18426 . . . . . . . . 9  |-  ( G dom DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  ->  ( G DProd  ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  =  ( K `  U. ran  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) )
27854, 277syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  =  ( K `
 U. ran  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) )
279276, 278sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) )
28016, 17fnmpti 6022 . . . . . . . . . . . . 13  |-  ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  Fn  I
281 fnressn 6425 . . . . . . . . . . . . 13  |-  ( ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  Fn  I  /\  ( 1st `  x )  e.  I )  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  { ( 1st `  x
) } )  =  { <. ( 1st `  x
) ,  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) ) >. } )
282280, 45, 281sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  { ( 1st `  x
) } )  =  { <. ( 1st `  x
) ,  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) ) >. } )
283125opeq2d 4409 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  <. ( 1st `  x ) ,  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) ) >.  =  <. ( 1st `  x
) ,  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) >. )
284283sneqd 4189 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  { <. ( 1st `  x ) ,  ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )
>. }  =  { <. ( 1st `  x ) ,  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) >. } )
285282, 284eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  { ( 1st `  x
) } )  =  { <. ( 1st `  x
) ,  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) >. } )
286285oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  { ( 1st `  x ) } ) )  =  ( G DProd  { <. ( 1st `  x
) ,  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) >. } ) )
287 dprdsubg 18423 . . . . . . . . . . . . 13  |-  ( G dom DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  ->  ( G DProd  ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  e.  (SubGrp `  G ) )
28854, 287syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  e.  (SubGrp `  G ) )
289 dprdsn 18435 . . . . . . . . . . . 12  |-  ( ( ( 1st `  x
)  e.  I  /\  ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )  e.  (SubGrp `  G ) )  -> 
( G dom DProd  { <. ( 1st `  x ) ,  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) >. }  /\  ( G DProd  { <. ( 1st `  x ) ,  ( G DProd  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) >. } )  =  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) ) )
29045, 288, 289syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( G dom DProd  { <. ( 1st `  x
) ,  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) >. }  /\  ( G DProd  { <. ( 1st `  x
) ,  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) >. } )  =  ( G DProd  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) ) )
291290simprd 479 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  { <. ( 1st `  x
) ,  ( G DProd 
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) >. } )  =  ( G DProd  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
292286, 291eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  { ( 1st `  x ) } ) )  =  ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )
2934adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  G dom DProd  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) )
29418a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  =  I )
295 difss 3737 . . . . . . . . . . 11  |-  ( I 
\  { ( 1st `  x ) } ) 
C_  I
296295a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
I  \  { ( 1st `  x ) } )  C_  I )
297 disjdif 4040 . . . . . . . . . . 11  |-  ( { ( 1st `  x
) }  i^i  (
I  \  { ( 1st `  x ) } ) )  =  (/)
298297a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( { ( 1st `  x
) }  i^i  (
I  \  { ( 1st `  x ) } ) )  =  (/) )
299293, 294, 171, 296, 298, 1dprdcntz2 18437 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  { ( 1st `  x ) } ) )  C_  (
(Cntz `  G ) `  ( G DProd  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) )
300292, 299eqsstr3d 3640 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )
30129adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  i  e.  I )  ->  G dom DProd  ( j  e.  ( A " { i } )  |->  ( i S j ) ) )
30267, 248, 42, 301, 293, 3, 296dprd2dlem1 18440 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  =  ( G DProd 
( i  e.  ( I  \  { ( 1st `  x ) } )  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) ) )
303 resmpt 5449 . . . . . . . . . . . 12  |-  ( ( I  \  { ( 1st `  x ) } )  C_  I  ->  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) )  =  ( i  e.  ( I  \  {
( 1st `  x
) } )  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) )
304295, 303ax-mp 5 . . . . . . . . . . 11  |-  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x ) } ) )  =  ( i  e.  ( I  \  { ( 1st `  x ) } )  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )
305304oveq2i 6661 . . . . . . . . . 10  |-  ( G DProd 
( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) )  =  ( G DProd 
( i  e.  ( I  \  { ( 1st `  x ) } )  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) )
306302, 305syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  =  ( G DProd 
( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) ) )
307306fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
(Cntz `  G ) `  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  =  ( (Cntz `  G
) `  ( G DProd  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )
308300, 307sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  C_  ( (Cntz `  G ) `  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
309279, 308sstrd 3613 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  (
(Cntz `  G ) `  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) ) )
310228, 1lsmsubg 18069 . . . . . 6  |-  ( ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( K `  U. ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) )  e.  (SubGrp `  G
)  /\  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  (
(Cntz `  G ) `  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) ) )  ->  ( ( K `
 U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( K `
 U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) )  e.  (SubGrp `  G ) )
311225, 227, 309, 310syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  e.  (SubGrp `  G )
)
3123mrcsscl 16280 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( A  \  { x }
) )  C_  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  /\  ( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )  e.  (SubGrp `  G )
)  ->  ( K `  U. ( S "
( A  \  {
x } ) ) )  C_  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( K `
 U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
313168, 231, 311, 312syl3anc 1326 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( A  \  { x } ) ) )  C_  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) ) )
314 sslin 3839 . . . 4  |-  ( ( K `  U. ( S " ( A  \  { x } ) ) )  C_  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  -> 
( ( S `  x )  i^i  ( K `  U. ( S
" ( A  \  { x } ) ) ) )  C_  ( ( S `  x )  i^i  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) ) ) )
315313, 314syl 17 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( A  \  {
x } ) ) ) )  C_  (
( S `  x
)  i^i  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( K `
 U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) ) )
31641ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  e.  (SubGrp `  G )
)
317228lsmlub 18078 . . . . . . . . . 10  |-  ( ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( S `  x )  e.  (SubGrp `  G )  /\  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  e.  (SubGrp `  G ) )  -> 
( ( ( K `
 U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) )  /\  ( S `
 x )  C_  ( G DProd  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )  <->  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( S `
 x ) ) 
C_  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) ) )
318225, 316, 288, 317syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) )  C_  ( G DProd  ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) )  /\  ( S `  x )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) ) )  <->  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( S `
 x ) ) 
C_  ( G DProd  (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) ) ) )
319279, 122, 318mpbi2and 956 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( S `  x
) )  C_  ( G DProd  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) ) )
320319, 125sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( S `  x
) )  C_  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) ) `
 ( 1st `  x
) ) )
321293, 294, 296dprdres 18427 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( G dom DProd  ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  |`  (
I  \  { ( 1st `  x ) } ) )  /\  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) )  C_  ( G DProd  ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) ) ) )
322321simpld 475 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  G dom DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) )
3233dprdspan 18426 . . . . . . . . . . 11  |-  ( G dom DProd  ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) )  |`  (
I  \  { ( 1st `  x ) } ) )  ->  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) )  =  ( K `
 U. ran  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  ( I  \  {
( 1st `  x
) } ) ) ) )
324322, 323syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) )  =  ( K `
 U. ran  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  ( I  \  {
( 1st `  x
) } ) ) ) )
325 df-ima 5127 . . . . . . . . . . . 12  |-  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) "
( I  \  {
( 1st `  x
) } ) )  =  ran  ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x ) } ) )
326325unieqi 4445 . . . . . . . . . . 11  |-  U. (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )
" ( I  \  { ( 1st `  x
) } ) )  =  U. ran  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  ( I  \  {
( 1st `  x
) } ) )
327326fveq2i 6194 . . . . . . . . . 10  |-  ( K `
 U. ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) "
( I  \  {
( 1st `  x
) } ) ) )  =  ( K `
 U. ran  (
( i  e.  I  |->  ( G DProd  ( j  e.  ( A " { i } ) 
|->  ( i S j ) ) ) )  |`  ( I  \  {
( 1st `  x
) } ) ) )
328324, 327syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( G DProd  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) )  |`  ( I  \  { ( 1st `  x
) } ) ) )  =  ( K `
 U. ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) "
( I  \  {
( 1st `  x
) } ) ) ) )
329306, 328eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  =  ( K `
 U. ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) "
( I  \  {
( 1st `  x
) } ) ) ) )
330 eqimss 3657 . . . . . . . 8  |-  ( ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  =  ( K `
 U. ( ( i  e.  I  |->  ( G DProd  ( j  e.  ( A " {
i } )  |->  ( i S j ) ) ) ) "
( I  \  {
( 1st `  x
) } ) ) )  ->  ( K `  U. ( S "
( A  |`  (
I  \  { ( 1st `  x ) } ) ) ) ) 
C_  ( K `  U. ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) " ( I 
\  { ( 1st `  x ) } ) ) ) )
331329, 330syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  C_  ( K `  U. ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) " (
I  \  { ( 1st `  x ) } ) ) ) )
332 ss2in 3840 . . . . . . 7  |-  ( ( ( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( S `  x ) )  C_  ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )  /\  ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  C_  ( K `  U. ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) " (
I  \  { ( 1st `  x ) } ) ) ) )  ->  ( ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( S `
 x ) )  i^i  ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) )  C_  ( ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )  i^i  ( K `  U. ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) " ( I 
\  { ( 1st `  x ) } ) ) ) ) )
333320, 331, 332syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( S `  x ) )  i^i  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  C_  ( ( ( i  e.  I  |->  ( G DProd 
( j  e.  ( A " { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )  i^i  ( K `  U. ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) " ( I 
\  { ( 1st `  x ) } ) ) ) ) )
334293, 294, 45, 2, 3dprddisj 18408 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) `  ( 1st `  x ) )  i^i  ( K `  U. ( ( i  e.  I  |->  ( G DProd  (
j  e.  ( A
" { i } )  |->  ( i S j ) ) ) ) " ( I 
\  { ( 1st `  x ) } ) ) ) )  =  { ( 0g `  G ) } )
335333, 334sseqtrd 3641 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( S `  x ) )  i^i  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  C_  { ( 0g `  G
) } )
336228lsmub2 18072 . . . . . . . . 9  |-  ( ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( S `  x )  e.  (SubGrp `  G ) )  -> 
( S `  x
)  C_  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( S `
 x ) ) )
337225, 316, 336syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  C_  ( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( S `  x ) ) )
3382subg0cl 17602 . . . . . . . . 9  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  ( S `  x ) )
339316, 338syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( S `  x
) )
340337, 339sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( S `  x ) ) )
3412subg0cl 17602 . . . . . . . 8  |-  ( ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) )  e.  (SubGrp `  G )  ->  ( 0g `  G )  e.  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )
342227, 341syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )
343340, 342elind 3798 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( ( ( K `
 U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( S `
 x ) )  i^i  ( K `  U. ( S " ( A  |`  ( I  \  { ( 1st `  x
) } ) ) ) ) ) )
344343snssd 4340 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { ( 0g `  G ) }  C_  ( (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ( LSSum `  G )
( S `  x
) )  i^i  ( K `  U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )
345335, 344eqssd 3620 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) ( LSSum `  G
) ( S `  x ) )  i^i  ( K `  U. ( S " ( A  |`  ( I  \  {
( 1st `  x
) } ) ) ) ) )  =  { ( 0g `  G ) } )
346 incom 3805 . . . . 5  |-  ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  i^i  ( S `  x )
)  =  ( ( S `  x )  i^i  ( K `  U. ( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) ) )
34770, 102syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) `
 ( 2nd `  x
) )  =  ( ( 1st `  x
) S ( 2nd `  x ) ) )
34862fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  =  ( S `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
349100, 347, 3483eqtr4a 2682 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) `
 ( 2nd `  x
) )  =  ( S `  x ) )
350 eqimss2 3658 . . . . . . . . 9  |-  ( ( ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) `
 ( 2nd `  x
) )  =  ( S `  x )  ->  ( S `  x )  C_  (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) ) `
 ( 2nd `  x
) ) )
351349, 350syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( S `  x )  C_  ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) ) )
352 eldifsn 4317 . . . . . . . . . . . . 13  |-  ( y  e.  ( ( A  |`  { ( 1st `  x
) } )  \  { x } )  <-> 
( y  e.  ( A  |`  { ( 1st `  x ) } )  /\  y  =/=  x ) )
35311ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  Rel  A )
354 simprl 794 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  y  e.  ( A  |`  { ( 1st `  x ) } ) )
355251, 354sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  y  e.  A
)
356353, 355, 75syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
357356fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( S `  y )  =  ( S `  <. ( 1st `  y ) ,  ( 2nd `  y
) >. ) )
358357, 110syl6eqr 2674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( S `  y )  =  ( ( 1st `  y
) S ( 2nd `  y ) ) )
359356, 354eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( A  |`  { ( 1st `  x ) } ) )
360 fvex 6201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2nd `  y )  e.  _V
361360opelres 5401 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( A  |`  { ( 1st `  x ) } )  <->  ( <. ( 1st `  y ) ,  ( 2nd `  y
) >.  e.  A  /\  ( 1st `  y )  e.  { ( 1st `  x ) } ) )
362361simprbi 480 . . . . . . . . . . . . . . . . . . . 20  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( A  |`  { ( 1st `  x ) } )  ->  ( 1st `  y )  e.  {
( 1st `  x
) } )
363359, 362syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( 1st `  y
)  e.  { ( 1st `  x ) } )
364 elsni 4194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  y )  e.  { ( 1st `  x ) }  ->  ( 1st `  y )  =  ( 1st `  x
) )
365363, 364syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( 1st `  y
)  =  ( 1st `  x ) )
366365oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( ( 1st `  y ) S ( 2nd `  y ) )  =  ( ( 1st `  x ) S ( 2nd `  y
) ) )
367358, 366eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( S `  y )  =  ( ( 1st `  x
) S ( 2nd `  y ) ) )
368354, 233syl6eleq 2711 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  y  e.  ( { ( 1st `  x
) }  X.  ( A " { ( 1st `  x ) } ) ) )
369 xp2nd 7199 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( { ( 1st `  x ) }  X.  ( A
" { ( 1st `  x ) } ) )  ->  ( 2nd `  y )  e.  ( A " { ( 1st `  x ) } ) )
370368, 369syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( 2nd `  y
)  e.  ( A
" { ( 1st `  x ) } ) )
371 simprr 796 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  y  =/=  x
)
37262adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
373356, 372eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( y  =  x  <->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
374 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1st `  y )  e.  _V
375374, 360opth 4945 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. 
<->  ( ( 1st `  y
)  =  ( 1st `  x )  /\  ( 2nd `  y )  =  ( 2nd `  x
) ) )
376375baib 944 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  y )  =  ( 1st `  x
)  ->  ( <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. 
<->  ( 2nd `  y
)  =  ( 2nd `  x ) ) )
377365, 376syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. 
<->  ( 2nd `  y
)  =  ( 2nd `  x ) ) )
378373, 377bitrd 268 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( y  =  x  <->  ( 2nd `  y
)  =  ( 2nd `  x ) ) )
379378necon3bid 2838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( y  =/=  x  <->  ( 2nd `  y
)  =/=  ( 2nd `  x ) ) )
380371, 379mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( 2nd `  y
)  =/=  ( 2nd `  x ) )
381 eldifsn 4317 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  y )  e.  ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } )  <-> 
( ( 2nd `  y
)  e.  ( A
" { ( 1st `  x ) } )  /\  ( 2nd `  y
)  =/=  ( 2nd `  x ) ) )
382370, 380, 381sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( 2nd `  y
)  e.  ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) )
383 ovex 6678 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  x ) S ( 2nd `  y
) )  e.  _V
384 difss 3737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } )  C_  ( A " { ( 1st `  x ) } )
385 resmpt 5449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A " {
( 1st `  x
) } )  \  { ( 2nd `  x
) } )  C_  ( A " { ( 1st `  x ) } )  ->  (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  |`  ( ( A " { ( 1st `  x
) } )  \  { ( 2nd `  x
) } ) )  =  ( j  e.  ( ( A " { ( 1st `  x
) } )  \  { ( 2nd `  x
) } )  |->  ( ( 1st `  x
) S j ) ) )
386384, 385ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) )  |`  ( ( A " { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) )  =  ( j  e.  ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) 
|->  ( ( 1st `  x
) S j ) )
387 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  ( 2nd `  y
)  ->  ( ( 1st `  x ) S j )  =  ( ( 1st `  x
) S ( 2nd `  y ) ) )
388386, 387elrnmpt1s 5373 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  y
)  e.  ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } )  /\  ( ( 1st `  x
) S ( 2nd `  y ) )  e. 
_V )  ->  (
( 1st `  x
) S ( 2nd `  y ) )  e. 
ran  ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  |`  ( ( A " { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) ) )
389382, 383, 388sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( ( 1st `  x ) S ( 2nd `  y ) )  e.  ran  (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  |`  ( ( A " { ( 1st `  x
) } )  \  { ( 2nd `  x
) } ) ) )
390367, 389eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( S `  y )  e.  ran  ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )  |`  ( ( A " { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) ) )
391 df-ima 5127 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) )  =  ran  ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) )  |`  ( ( A " { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) )
392390, 391syl6eleqr 2712 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  (
y  e.  ( A  |`  { ( 1st `  x
) } )  /\  y  =/=  x ) )  ->  ( S `  y )  e.  ( ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )
" ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) ) )
393392ex 450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( y  e.  ( A  |`  { ( 1st `  x ) } )  /\  y  =/=  x )  ->  ( S `  y )  e.  ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )
394352, 393syl5bi 232 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
y  e.  ( ( A  |`  { ( 1st `  x ) } )  \  { x } )  ->  ( S `  y )  e.  ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )
395394ralrimiv 2965 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  A. y  e.  ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ( S `  y
)  e.  ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) )
396234, 255syl5ss 3614 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( A  |`  { ( 1st `  x ) } )  \  {
x } )  C_  dom  S )
397 funimass4 6247 . . . . . . . . . . . 12  |-  ( ( Fun  S  /\  (
( A  |`  { ( 1st `  x ) } )  \  {
x } )  C_  dom  S )  ->  (
( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) 
C_  ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) )  <->  A. y  e.  (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ( S `  y )  e.  ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )
398250, 396, 397syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
( S " (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ) 
C_  ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) )  <->  A. y  e.  (
( A  |`  { ( 1st `  x ) } )  \  {
x } ) ( S `  y )  e.  ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )
399395, 398mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  ( (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) )
400399unissd 4462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) )  C_  U. (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )
" ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) ) )
401 imassrn 5477 . . . . . . . . . . 11  |-  ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) 
C_  ran  ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) )
402401, 273syl5ss 3614 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )
" ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) )  C_  ~P ( Base `  G ) )
403 sspwuni 4611 . . . . . . . . . 10  |-  ( ( ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )
" ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) )  C_  ~P ( Base `  G )  <->  U. (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )
" ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) )  C_  ( Base `  G ) )
404402, 403sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  U. (
( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )
" ( ( A
" { ( 1st `  x ) } ) 
\  { ( 2nd `  x ) } ) )  C_  ( Base `  G ) )
405168, 3, 400, 404mrcssd 16284 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  ( K `  U. ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )
406 ss2in 3840 . . . . . . . 8  |-  ( ( ( S `  x
)  C_  ( (
j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  /\  ( K `  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  C_  ( K `  U. ( ( j  e.  ( A
" { ( 1st `  x ) } ) 
|->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) )  C_  ( ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  i^i  ( K `  U. ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) ) )
407351, 405, 406syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) )  C_  ( ( ( j  e.  ( A " { ( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  i^i  ( K `  U. ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) ) )
40859a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  dom  ( j  e.  ( A " { ( 1st `  x ) } )  |->  ( ( 1st `  x ) S j ) )  =  ( A " { ( 1st `  x
) } ) )
40954, 408, 70, 2, 3dprddisj 18408 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) `  ( 2nd `  x ) )  i^i  ( K `  U. ( ( j  e.  ( A " {
( 1st `  x
) } )  |->  ( ( 1st `  x
) S j ) ) " ( ( A " { ( 1st `  x ) } )  \  {
( 2nd `  x
) } ) ) ) )  =  {
( 0g `  G
) } )
410407, 409sseqtrd 3641 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) )  C_  { ( 0g `  G
) } )
4112subg0cl 17602 . . . . . . . . 9  |-  ( ( K `  U. ( S " ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) )  e.  (SubGrp `  G )  ->  ( 0g `  G )  e.  ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) )
412225, 411syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) )
413339, 412elind 3798 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( 0g `  G )  e.  ( ( S `  x )  i^i  ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ) )
414413snssd 4340 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  { ( 0g `  G ) }  C_  ( ( S `  x )  i^i  ( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) ) ) )
415410, 414eqssd 3620 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) )  =  { ( 0g `  G ) } )
416346, 415syl5eq 2668 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( K `  U. ( S " ( ( A  |`  { ( 1st `  x ) } )  \  { x } ) ) )  i^i  ( S `  x ) )  =  { ( 0g `  G ) } )
417228, 225, 316, 227, 2, 345, 416lsmdisj2 18095 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( ( K `  U. ( S
" ( ( A  |`  { ( 1st `  x
) } )  \  { x } ) ) ) ( LSSum `  G ) ( K `
 U. ( S
" ( A  |`  ( I  \  { ( 1st `  x ) } ) ) ) ) ) )  =  { ( 0g `  G ) } )
418315, 417sseqtrd 3641 . 2  |-  ( (
ph  /\  x  e.  A )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( A  \  {
x } ) ) ) )  C_  { ( 0g `  G ) } )
4191, 2, 3, 6, 40, 41, 164, 418dmdprdd 18398 1  |-  ( ph  ->  G dom DProd  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprd2db  18442  dprd2d2  18443
  Copyright terms: Public domain W3C validator