Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummpt2d Structured version   Visualization version   Unicode version

Theorem gsummpt2d 29781
Description: Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 18371. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Hypotheses
Ref Expression
gsummpt2d.c  |-  F/_ z C
gsummpt2d.0  |-  F/ y
ph
gsummpt2d.b  |-  B  =  ( Base `  W
)
gsummpt2d.1  |-  ( x  =  <. y ,  z
>.  ->  C  =  D )
gsummpt2d.r  |-  ( ph  ->  Rel  A )
gsummpt2d.2  |-  ( ph  ->  A  e.  Fin )
gsummpt2d.m  |-  ( ph  ->  W  e. CMnd )
gsummpt2d.3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
Assertion
Ref Expression
gsummpt2d  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( y  e.  dom  A 
|->  ( W  gsumg  ( z  e.  ( A " { y } )  |->  D ) ) ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    y, C    x, D    x, W, y    ph, x, z
Allowed substitution hints:    ph( y)    C( x, z)    D( y, z)    W( z)

Proof of Theorem gsummpt2d
StepHypRef Expression
1 gsummpt2d.b . . 3  |-  B  =  ( Base `  W
)
2 eqid 2622 . . 3  |-  ( 0g
`  W )  =  ( 0g `  W
)
3 gsummpt2d.m . . 3  |-  ( ph  ->  W  e. CMnd )
4 gsummpt2d.2 . . 3  |-  ( ph  ->  A  e.  Fin )
5 dmexg 7097 . . . 4  |-  ( A  e.  Fin  ->  dom  A  e.  _V )
64, 5syl 17 . . 3  |-  ( ph  ->  dom  A  e.  _V )
7 gsummpt2d.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
8 gsummpt2d.r . . . 4  |-  ( ph  ->  Rel  A )
9 1stdm 7215 . . . 4  |-  ( ( Rel  A  /\  x  e.  A )  ->  ( 1st `  x )  e. 
dom  A )
108, 9sylan 488 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( 1st `  x )  e. 
dom  A )
11 fo1st 7188 . . . . . 6  |-  1st : _V -onto-> _V
12 fofn 6117 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
13 dffn5 6241 . . . . . . 7  |-  ( 1st 
Fn  _V  <->  1st  =  ( x  e.  _V  |->  ( 1st `  x ) ) )
1413biimpi 206 . . . . . 6  |-  ( 1st 
Fn  _V  ->  1st  =  ( x  e.  _V  |->  ( 1st `  x ) ) )
1511, 12, 14mp2b 10 . . . . 5  |-  1st  =  ( x  e.  _V  |->  ( 1st `  x ) )
1615reseq1i 5392 . . . 4  |-  ( 1st  |`  A )  =  ( ( x  e.  _V  |->  ( 1st `  x ) )  |`  A )
17 ssv 3625 . . . . 5  |-  A  C_  _V
18 resmpt 5449 . . . . 5  |-  ( A 
C_  _V  ->  ( ( x  e.  _V  |->  ( 1st `  x ) )  |`  A )  =  ( x  e.  A  |->  ( 1st `  x
) ) )
1917, 18ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  ( 1st `  x ) )  |`  A )  =  ( x  e.  A  |->  ( 1st `  x
) )
2016, 19eqtri 2644 . . 3  |-  ( 1st  |`  A )  =  ( x  e.  A  |->  ( 1st `  x ) )
211, 2, 3, 4, 6, 7, 10, 20gsummpt2co 29780 . 2  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( y  e.  dom  A 
|->  ( W  gsumg  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) ) ) ) )
22 gsummpt2d.0 . . . 4  |-  F/ y
ph
233adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  dom  A )  ->  W  e. CMnd )
244adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  A  e.  Fin )
25 imaexg 7103 . . . . . . 7  |-  ( A  e.  Fin  ->  ( A " { y } )  e.  _V )
2624, 25syl 17 . . . . . 6  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( A " { y } )  e.  _V )
27 gsummpt2d.1 . . . . . . . . . 10  |-  ( x  =  <. y ,  z
>.  ->  C  =  D )
2827adantl 482 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  dom  A
)  /\  z  e.  ( A " { y } ) )  /\  x  e.  A )  /\  x  =  <. y ,  z >. )  ->  C  =  D )
29 simp-4l 806 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  dom  A
)  /\  z  e.  ( A " { y } ) )  /\  x  e.  A )  /\  x  =  <. y ,  z >. )  ->  ph )
30 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  dom  A
)  /\  z  e.  ( A " { y } ) )  /\  x  e.  A )  /\  x  =  <. y ,  z >. )  ->  x  e.  A )
3129, 30, 7syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  dom  A
)  /\  z  e.  ( A " { y } ) )  /\  x  e.  A )  /\  x  =  <. y ,  z >. )  ->  C  e.  B )
3228, 31eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  dom  A
)  /\  z  e.  ( A " { y } ) )  /\  x  e.  A )  /\  x  =  <. y ,  z >. )  ->  D  e.  B )
33 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
34 vex 3203 . . . . . . . . . . . 12  |-  z  e. 
_V
3533, 34elimasn 5490 . . . . . . . . . . 11  |-  ( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A )
3635biimpi 206 . . . . . . . . . 10  |-  ( z  e.  ( A " { y } )  ->  <. y ,  z
>.  e.  A )
3736adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  z  e.  ( A " { y } ) )  ->  <. y ,  z >.  e.  A
)
38 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  z  e.  ( A " { y } ) )  /\  x  =  <. y ,  z >. )  ->  x  =  <. y ,  z
>. )
3938eqeq1d 2624 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  z  e.  ( A " { y } ) )  /\  x  =  <. y ,  z >. )  ->  (
x  =  <. y ,  z >.  <->  <. y ,  z >.  =  <. y ,  z >. )
)
40 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  z  e.  ( A " { y } ) )  ->  <. y ,  z >.  =  <. y ,  z >. )
4137, 39, 40rspcedvd 3317 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  z  e.  ( A " { y } ) )  ->  E. x  e.  A  x  =  <. y ,  z >.
)
4232, 41r19.29a 3078 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  z  e.  ( A " { y } ) )  ->  D  e.  B )
43 eqid 2622 . . . . . . 7  |-  ( z  e.  ( A " { y } ) 
|->  D )  =  ( z  e.  ( A
" { y } )  |->  D )
4442, 43fmptd 6385 . . . . . 6  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
z  e.  ( A
" { y } )  |->  D ) : ( A " {
y } ) --> B )
45 imafi2 29489 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( A " { y } )  e.  Fin )
464, 45syl 17 . . . . . . . 8  |-  ( ph  ->  ( A " {
y } )  e. 
Fin )
4746adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( A " { y } )  e.  Fin )
48 fvex 6201 . . . . . . . 8  |-  ( 0g
`  W )  e. 
_V
4948a1i 11 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( 0g `  W )  e. 
_V )
5043, 47, 42, 49fsuppmptdm 8286 . . . . . 6  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
z  e.  ( A
" { y } )  |->  D ) finSupp  ( 0g `  W ) )
51 2ndconst 7266 . . . . . . . 8  |-  ( y  e.  dom  A  -> 
( 2nd  |`  ( { y }  X.  ( A " { y } ) ) ) : ( { y }  X.  ( A " { y } ) ) -1-1-onto-> ( A " {
y } ) )
5251adantl 482 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( 2nd  |`  ( { y }  X.  ( A
" { y } ) ) ) : ( { y }  X.  ( A " { y } ) ) -1-1-onto-> ( A " {
y } ) )
53 1stpreimas 29483 . . . . . . . . . 10  |-  ( ( Rel  A  /\  y  e.  dom  A )  -> 
( `' ( 1st  |`  A ) " {
y } )  =  ( { y }  X.  ( A " { y } ) ) )
548, 53sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( `' ( 1st  |`  A )
" { y } )  =  ( { y }  X.  ( A " { y } ) ) )
5554reseq2d 5396 . . . . . . . 8  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( 2nd  |`  ( `' ( 1st  |`  A ) " { y } ) )  =  ( 2nd  |`  ( { y }  X.  ( A " { y } ) ) ) )
56 f1oeq1 6127 . . . . . . . 8  |-  ( ( 2nd  |`  ( `' ( 1st  |`  A ) " { y } ) )  =  ( 2nd  |`  ( { y }  X.  ( A " { y } ) ) )  ->  (
( 2nd  |`  ( `' ( 1st  |`  A )
" { y } ) ) : ( { y }  X.  ( A " { y } ) ) -1-1-onto-> ( A
" { y } )  <->  ( 2nd  |`  ( { y }  X.  ( A " { y } ) ) ) : ( { y }  X.  ( A
" { y } ) ) -1-1-onto-> ( A " {
y } ) ) )
5755, 56syl 17 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
( 2nd  |`  ( `' ( 1st  |`  A )
" { y } ) ) : ( { y }  X.  ( A " { y } ) ) -1-1-onto-> ( A
" { y } )  <->  ( 2nd  |`  ( { y }  X.  ( A " { y } ) ) ) : ( { y }  X.  ( A
" { y } ) ) -1-1-onto-> ( A " {
y } ) ) )
5852, 57mpbird 247 . . . . . 6  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( 2nd  |`  ( `' ( 1st  |`  A ) " { y } ) ) : ( { y }  X.  ( A " { y } ) ) -1-1-onto-> ( A " {
y } ) )
591, 2, 23, 26, 44, 50, 58gsumf1o 18317 . . . . 5  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( W  gsumg  ( z  e.  ( A " { y } )  |->  D ) )  =  ( W 
gsumg  ( ( z  e.  ( A " {
y } )  |->  D )  o.  ( 2nd  |`  ( `' ( 1st  |`  A ) " {
y } ) ) ) ) )
60 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A ) " { y } ) )  ->  x  e.  ( `' ( 1st  |`  A )
" { y } ) )
6154adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A ) " { y } ) )  ->  ( `' ( 1st  |`  A ) " { y } )  =  ( { y }  X.  ( A
" { y } ) ) )
6260, 61eleqtrd 2703 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A ) " { y } ) )  ->  x  e.  ( { y }  X.  ( A " { y } ) ) )
63 xp2nd 7199 . . . . . . . . . 10  |-  ( x  e.  ( { y }  X.  ( A
" { y } ) )  ->  ( 2nd `  x )  e.  ( A " {
y } ) )
6462, 63syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A ) " { y } ) )  ->  ( 2nd `  x )  e.  ( A " { y } ) )
6564ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  y  e.  dom  A )  ->  A. x  e.  ( `' ( 1st  |`  A ) " {
y } ) ( 2nd `  x )  e.  ( A " { y } ) )
66 fo2nd 7189 . . . . . . . . . . . 12  |-  2nd : _V -onto-> _V
67 fofn 6117 . . . . . . . . . . . 12  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
68 dffn5 6241 . . . . . . . . . . . . 13  |-  ( 2nd 
Fn  _V  <->  2nd  =  ( x  e.  _V  |->  ( 2nd `  x ) ) )
6968biimpi 206 . . . . . . . . . . . 12  |-  ( 2nd 
Fn  _V  ->  2nd  =  ( x  e.  _V  |->  ( 2nd `  x ) ) )
7066, 67, 69mp2b 10 . . . . . . . . . . 11  |-  2nd  =  ( x  e.  _V  |->  ( 2nd `  x ) )
7170reseq1i 5392 . . . . . . . . . 10  |-  ( 2nd  |`  ( `' ( 1st  |`  A ) " {
y } ) )  =  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( `' ( 1st  |`  A )
" { y } ) )
72 ssv 3625 . . . . . . . . . . 11  |-  ( `' ( 1st  |`  A )
" { y } )  C_  _V
73 resmpt 5449 . . . . . . . . . . 11  |-  ( ( `' ( 1st  |`  A )
" { y } )  C_  _V  ->  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( `' ( 1st  |`  A ) " { y } ) )  =  ( x  e.  ( `' ( 1st  |`  A ) " { y } ) 
|->  ( 2nd `  x
) ) )
7472, 73ax-mp 5 . . . . . . . . . 10  |-  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( `' ( 1st  |`  A ) " { y } ) )  =  ( x  e.  ( `' ( 1st  |`  A ) " { y } ) 
|->  ( 2nd `  x
) )
7571, 74eqtri 2644 . . . . . . . . 9  |-  ( 2nd  |`  ( `' ( 1st  |`  A ) " {
y } ) )  =  ( x  e.  ( `' ( 1st  |`  A ) " {
y } )  |->  ( 2nd `  x ) )
7675a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( 2nd  |`  ( `' ( 1st  |`  A ) " { y } ) )  =  ( x  e.  ( `' ( 1st  |`  A ) " { y } ) 
|->  ( 2nd `  x
) ) )
77 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
z  e.  ( A
" { y } )  |->  D )  =  ( z  e.  ( A " { y } )  |->  D ) )
7865, 76, 77fmptcos 6398 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
( z  e.  ( A " { y } )  |->  D )  o.  ( 2nd  |`  ( `' ( 1st  |`  A )
" { y } ) ) )  =  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  [_ ( 2nd `  x
)  /  z ]_ D ) )
79 nfv 1843 . . . . . . . . 9  |-  F/ z ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )
80 gsummpt2d.c . . . . . . . . . 10  |-  F/_ z C
8180a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A ) " { y } ) )  ->  F/_ z C )
8262adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  x  e.  ( { y }  X.  ( A " { y } ) ) )
83 xp1st 7198 . . . . . . . . . . . . . 14  |-  ( x  e.  ( { y }  X.  ( A
" { y } ) )  ->  ( 1st `  x )  e. 
{ y } )
8482, 83syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  ( 1st `  x )  e. 
{ y } )
85 fvex 6201 . . . . . . . . . . . . . 14  |-  ( 1st `  x )  e.  _V
8685elsn 4192 . . . . . . . . . . . . 13  |-  ( ( 1st `  x )  e.  { y }  <-> 
( 1st `  x
)  =  y )
8784, 86sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  ( 1st `  x )  =  y )
88 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  z  =  ( 2nd `  x
) )
8988eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  ( 2nd `  x )  =  z )
90 eqopi 7202 . . . . . . . . . . . 12  |-  ( ( x  e.  ( { y }  X.  ( A " { y } ) )  /\  (
( 1st `  x
)  =  y  /\  ( 2nd `  x )  =  z ) )  ->  x  =  <. y ,  z >. )
9182, 87, 89, 90syl12anc 1324 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  x  =  <. y ,  z
>. )
9291, 27syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  C  =  D )
9392eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A )
" { y } ) )  /\  z  =  ( 2nd `  x
) )  ->  D  =  C )
9479, 81, 64, 93csbiedf 3554 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  dom  A )  /\  x  e.  ( `' ( 1st  |`  A ) " { y } ) )  ->  [_ ( 2nd `  x )  /  z ]_ D  =  C
)
9594mpteq2dva 4744 . . . . . . 7  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  [_ ( 2nd `  x
)  /  z ]_ D )  =  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) )
9678, 95eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  y  e.  dom  A )  ->  (
( z  e.  ( A " { y } )  |->  D )  o.  ( 2nd  |`  ( `' ( 1st  |`  A )
" { y } ) ) )  =  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) )
9796oveq2d 6666 . . . . 5  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( W  gsumg  ( ( z  e.  ( A " {
y } )  |->  D )  o.  ( 2nd  |`  ( `' ( 1st  |`  A ) " {
y } ) ) ) )  =  ( W  gsumg  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) ) )
9859, 97eqtr2d 2657 . . . 4  |-  ( (
ph  /\  y  e.  dom  A )  ->  ( W  gsumg  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) )  =  ( W  gsumg  ( z  e.  ( A " { y } ) 
|->  D ) ) )
9922, 98mpteq2da 4743 . . 3  |-  ( ph  ->  ( y  e.  dom  A 
|->  ( W  gsumg  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) ) )  =  ( y  e.  dom  A  |->  ( W  gsumg  ( z  e.  ( A " { y } )  |->  D ) ) ) )
10099oveq2d 6666 . 2  |-  ( ph  ->  ( W  gsumg  ( y  e.  dom  A 
|->  ( W  gsumg  ( x  e.  ( `' ( 1st  |`  A )
" { y } )  |->  C ) ) ) )  =  ( W  gsumg  ( y  e.  dom  A 
|->  ( W  gsumg  ( z  e.  ( A " { y } )  |->  D ) ) ) ) )
10121, 100eqtrd 2656 1  |-  ( ph  ->  ( W  gsumg  ( x  e.  A  |->  C ) )  =  ( W  gsumg  ( y  e.  dom  A 
|->  ( W  gsumg  ( z  e.  ( A " { y } )  |->  D ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [_csb 3533    C_ wss 3574   {csn 4177   <.cop 4183    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   Basecbs 15857   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  esum2d  30155
  Copyright terms: Public domain W3C validator