Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stpreimas Structured version   Visualization version   Unicode version

Theorem 1stpreimas 29483
Description: The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.)
Assertion
Ref Expression
1stpreimas  |-  ( ( Rel  A  /\  X  e.  V )  ->  ( `' ( 1st  |`  A )
" { X }
)  =  ( { X }  X.  ( A " { X }
) ) )

Proof of Theorem 1stpreimas
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1st2ndb 7206 . . . . . . . . 9  |-  ( z  e.  ( _V  X.  _V )  <->  z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
21biimpi 206 . . . . . . . 8  |-  ( z  e.  ( _V  X.  _V )  ->  z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >. )
32ad2antrl 764 . . . . . . 7  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
4 fvex 6201 . . . . . . . . . . . 12  |-  ( 1st `  z )  e.  _V
54elsn 4192 . . . . . . . . . . 11  |-  ( ( 1st `  z )  e.  { X }  <->  ( 1st `  z )  =  X )
65biimpi 206 . . . . . . . . . 10  |-  ( ( 1st `  z )  e.  { X }  ->  ( 1st `  z
)  =  X )
76ad2antrl 764 . . . . . . . . 9  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) )  -> 
( 1st `  z
)  =  X )
87adantl 482 . . . . . . . 8  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  ( 1st `  z
)  =  X )
98opeq1d 4408 . . . . . . 7  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. X ,  ( 2nd `  z
) >. )
103, 9eqtrd 2656 . . . . . 6  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  z  =  <. X ,  ( 2nd `  z
) >. )
11 simplr 792 . . . . . . 7  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  X  e.  V
)
12 simprrr 805 . . . . . . 7  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  ( 2nd `  z
)  e.  ( A
" { X }
) )
13 elimasng 5491 . . . . . . . 8  |-  ( ( X  e.  V  /\  ( 2nd `  z )  e.  ( A " { X } ) )  ->  ( ( 2nd `  z )  e.  ( A " { X } )  <->  <. X , 
( 2nd `  z
) >.  e.  A ) )
1413biimpa 501 . . . . . . 7  |-  ( ( ( X  e.  V  /\  ( 2nd `  z
)  e.  ( A
" { X }
) )  /\  ( 2nd `  z )  e.  ( A " { X } ) )  ->  <. X ,  ( 2nd `  z ) >.  e.  A
)
1511, 12, 12, 14syl21anc 1325 . . . . . 6  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  <. X ,  ( 2nd `  z )
>.  e.  A )
1610, 15eqeltrd 2701 . . . . 5  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  z  e.  A
)
17 fvres 6207 . . . . . . 7  |-  ( z  e.  A  ->  (
( 1st  |`  A ) `
 z )  =  ( 1st `  z
) )
1816, 17syl 17 . . . . . 6  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  ( ( 1st  |`  A ) `  z
)  =  ( 1st `  z ) )
1918, 8eqtrd 2656 . . . . 5  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  ( ( 1st  |`  A ) `  z
)  =  X )
2016, 19jca 554 . . . 4  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )  ->  ( z  e.  A  /\  ( ( 1st  |`  A ) `  z )  =  X ) )
21 df-rel 5121 . . . . . . . . 9  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
2221biimpi 206 . . . . . . . 8  |-  ( Rel 
A  ->  A  C_  ( _V  X.  _V ) )
2322adantr 481 . . . . . . 7  |-  ( ( Rel  A  /\  X  e.  V )  ->  A  C_  ( _V  X.  _V ) )
2423sselda 3603 . . . . . 6  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  z  e.  A
)  ->  z  e.  ( _V  X.  _V )
)
2524adantrr 753 . . . . 5  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
z  e.  ( _V 
X.  _V ) )
2617ad2antrl 764 . . . . . . . 8  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( ( 1st  |`  A ) `
 z )  =  ( 1st `  z
) )
27 simprr 796 . . . . . . . 8  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( ( 1st  |`  A ) `
 z )  =  X )
2826, 27eqtr3d 2658 . . . . . . 7  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( 1st `  z
)  =  X )
2928, 5sylibr 224 . . . . . 6  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( 1st `  z
)  e.  { X } )
3028, 29eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  ->  X  e.  { X } )
31 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( Rel  A  /\  X  e.  V
)  /\  ( z  e.  A  /\  (
( 1st  |`  A ) `
 z )  =  X ) )  /\  x  =  X )  ->  x  =  X )
3231opeq1d 4408 . . . . . . . . . 10  |-  ( ( ( ( Rel  A  /\  X  e.  V
)  /\  ( z  e.  A  /\  (
( 1st  |`  A ) `
 z )  =  X ) )  /\  x  =  X )  -> 
<. x ,  ( 2nd `  z ) >.  =  <. X ,  ( 2nd `  z
) >. )
3332eleq1d 2686 . . . . . . . . 9  |-  ( ( ( ( Rel  A  /\  X  e.  V
)  /\  ( z  e.  A  /\  (
( 1st  |`  A ) `
 z )  =  X ) )  /\  x  =  X )  ->  ( <. x ,  ( 2nd `  z )
>.  e.  A  <->  <. X , 
( 2nd `  z
) >.  e.  A ) )
34 1st2nd 7214 . . . . . . . . . . . 12  |-  ( ( Rel  A  /\  z  e.  A )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
3534ad2ant2r 783 . . . . . . . . . . 11  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
3628opeq1d 4408 . . . . . . . . . . 11  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  ->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. X ,  ( 2nd `  z
) >. )
3735, 36eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
z  =  <. X , 
( 2nd `  z
) >. )
38 simprl 794 . . . . . . . . . 10  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
z  e.  A )
3937, 38eqeltrrd 2702 . . . . . . . . 9  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  ->  <. X ,  ( 2nd `  z ) >.  e.  A
)
4030, 33, 39rspcedvd 3317 . . . . . . . 8  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  ->  E. x  e.  { X } <. x ,  ( 2nd `  z )
>.  e.  A )
41 df-rex 2918 . . . . . . . 8  |-  ( E. x  e.  { X } <. x ,  ( 2nd `  z )
>.  e.  A  <->  E. x
( x  e.  { X }  /\  <. x ,  ( 2nd `  z
) >.  e.  A ) )
4240, 41sylib 208 . . . . . . 7  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  ->  E. x ( x  e. 
{ X }  /\  <.
x ,  ( 2nd `  z ) >.  e.  A
) )
43 fvex 6201 . . . . . . . 8  |-  ( 2nd `  z )  e.  _V
4443elima3 5473 . . . . . . 7  |-  ( ( 2nd `  z )  e.  ( A " { X } )  <->  E. x
( x  e.  { X }  /\  <. x ,  ( 2nd `  z
) >.  e.  A ) )
4542, 44sylibr 224 . . . . . 6  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( 2nd `  z
)  e.  ( A
" { X }
) )
4629, 45jca 554 . . . . 5  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) )
4725, 46jca 554 . . . 4  |-  ( ( ( Rel  A  /\  X  e.  V )  /\  ( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )  -> 
( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )
4820, 47impbida 877 . . 3  |-  ( ( Rel  A  /\  X  e.  V )  ->  (
( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) )  <->  ( z  e.  A  /\  (
( 1st  |`  A ) `
 z )  =  X ) ) )
49 elxp7 7201 . . . 4  |-  ( z  e.  ( { X }  X.  ( A " { X } ) )  <-> 
( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z
)  e.  { X }  /\  ( 2nd `  z
)  e.  ( A
" { X }
) ) ) )
5049a1i 11 . . 3  |-  ( ( Rel  A  /\  X  e.  V )  ->  (
z  e.  ( { X }  X.  ( A " { X }
) )  <->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  { X }  /\  ( 2nd `  z )  e.  ( A " { X } ) ) ) ) )
51 fo1st 7188 . . . . . . 7  |-  1st : _V -onto-> _V
52 fofn 6117 . . . . . . 7  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
5351, 52ax-mp 5 . . . . . 6  |-  1st  Fn  _V
54 ssv 3625 . . . . . 6  |-  A  C_  _V
55 fnssres 6004 . . . . . 6  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( 1st  |`  A )  Fn  A )
5653, 54, 55mp2an 708 . . . . 5  |-  ( 1st  |`  A )  Fn  A
57 fniniseg 6338 . . . . 5  |-  ( ( 1st  |`  A )  Fn  A  ->  ( z  e.  ( `' ( 1st  |`  A ) " { X } )  <-> 
( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) ) )
5856, 57ax-mp 5 . . . 4  |-  ( z  e.  ( `' ( 1st  |`  A ) " { X } )  <-> 
( z  e.  A  /\  ( ( 1st  |`  A ) `
 z )  =  X ) )
5958a1i 11 . . 3  |-  ( ( Rel  A  /\  X  e.  V )  ->  (
z  e.  ( `' ( 1st  |`  A )
" { X }
)  <->  ( z  e.  A  /\  ( ( 1st  |`  A ) `  z )  =  X ) ) )
6048, 50, 593bitr4rd 301 . 2  |-  ( ( Rel  A  /\  X  e.  V )  ->  (
z  e.  ( `' ( 1st  |`  A )
" { X }
)  <->  z  e.  ( { X }  X.  ( A " { X } ) ) ) )
6160eqrdv 2620 1  |-  ( ( Rel  A  /\  X  e.  V )  ->  ( `' ( 1st  |`  A )
" { X }
)  =  ( { X }  X.  ( A " { X }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   <.cop 4183    X. cxp 5112   `'ccnv 5113    |` cres 5116   "cima 5117   Rel wrel 5119    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  gsummpt2d  29781
  Copyright terms: Public domain W3C validator