| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovmpt2rab1 | Structured version Visualization version Unicode version | ||
| Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| elovmpt2rab1.o |
|
| elovmpt2rab1.v |
|
| Ref | Expression |
|---|---|
| elovmpt2rab1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpt2rab1.o |
. . 3
| |
| 2 | 1 | elmpt2cl 6876 |
. 2
|
| 3 | 1 | a1i 11 |
. . . . 5
|
| 4 | csbeq1 3536 |
. . . . . . 7
| |
| 5 | 4 | ad2antrl 764 |
. . . . . 6
|
| 6 | sbceq1a 3446 |
. . . . . . . 8
| |
| 7 | sbceq1a 3446 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylan9bbr 737 |
. . . . . . 7
|
| 9 | 8 | adantl 482 |
. . . . . 6
|
| 10 | 5, 9 | rabeqbidv 3195 |
. . . . 5
|
| 11 | eqidd 2623 |
. . . . 5
| |
| 12 | simpl 473 |
. . . . 5
| |
| 13 | simpr 477 |
. . . . 5
| |
| 14 | elovmpt2rab1.v |
. . . . . 6
| |
| 15 | rabexg 4812 |
. . . . . 6
| |
| 16 | 14, 15 | syl 17 |
. . . . 5
|
| 17 | nfcv 2764 |
. . . . . . 7
| |
| 18 | 17 | nfel1 2779 |
. . . . . 6
|
| 19 | nfcv 2764 |
. . . . . . 7
| |
| 20 | 19 | nfel1 2779 |
. . . . . 6
|
| 21 | 18, 20 | nfan 1828 |
. . . . 5
|
| 22 | nfcv 2764 |
. . . . . . 7
| |
| 23 | 22 | nfel1 2779 |
. . . . . 6
|
| 24 | nfcv 2764 |
. . . . . . 7
| |
| 25 | 24 | nfel1 2779 |
. . . . . 6
|
| 26 | 23, 25 | nfan 1828 |
. . . . 5
|
| 27 | nfsbc1v 3455 |
. . . . . 6
| |
| 28 | nfcv 2764 |
. . . . . . 7
| |
| 29 | 17, 28 | nfcsb 3551 |
. . . . . 6
|
| 30 | 27, 29 | nfrab 3123 |
. . . . 5
|
| 31 | nfsbc1v 3455 |
. . . . . . 7
| |
| 32 | 22, 31 | nfsbc 3457 |
. . . . . 6
|
| 33 | nfcv 2764 |
. . . . . . 7
| |
| 34 | 22, 33 | nfcsb 3551 |
. . . . . 6
|
| 35 | 32, 34 | nfrab 3123 |
. . . . 5
|
| 36 | 3, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35 | ovmpt2dxf 6786 |
. . . 4
|
| 37 | 36 | eleq2d 2687 |
. . 3
|
| 38 | df-3an 1039 |
. . . . 5
| |
| 39 | 38 | simplbi2com 657 |
. . . 4
|
| 40 | elrabi 3359 |
. . . 4
| |
| 41 | 39, 40 | syl11 33 |
. . 3
|
| 42 | 37, 41 | sylbid 230 |
. 2
|
| 43 | 2, 42 | mpcom 38 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: elovmpt2wrd 13347 |
| Copyright terms: Public domain | W3C validator |