MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karden Structured version   Visualization version   Unicode version

Theorem karden 8758
Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden 9373). The hypotheses correspond to the definition of kard of [Enderton] p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex 8757 justify the definition of kard. The restriction to the least rank prevents the proper class that would result from  { x  |  x  ~~  A }. (Contributed by NM, 18-Dec-2003.)
Hypotheses
Ref Expression
karden.1  |-  A  e. 
_V
karden.2  |-  B  e. 
_V
karden.3  |-  C  =  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
karden.4  |-  D  =  { x  |  ( x  ~~  B  /\  A. y ( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
Assertion
Ref Expression
karden  |-  ( C  =  D  <->  A  ~~  B )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem karden
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 karden.1 . . . . . . . 8  |-  A  e. 
_V
21enref 7988 . . . . . . 7  |-  A  ~~  A
3 breq1 4656 . . . . . . . 8  |-  ( w  =  A  ->  (
w  ~~  A  <->  A  ~~  A ) )
41, 3spcev 3300 . . . . . . 7  |-  ( A 
~~  A  ->  E. w  w  ~~  A )
52, 4ax-mp 5 . . . . . 6  |-  E. w  w  ~~  A
6 abn0 3954 . . . . . 6  |-  ( { w  |  w  ~~  A }  =/=  (/)  <->  E. w  w  ~~  A )
75, 6mpbir 221 . . . . 5  |-  { w  |  w  ~~  A }  =/=  (/)
8 scott0 8749 . . . . . 6  |-  ( { w  |  w  ~~  A }  =  (/)  <->  { z  e.  { w  |  w 
~~  A }  |  A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
) }  =  (/) )
98necon3bii 2846 . . . . 5  |-  ( { w  |  w  ~~  A }  =/=  (/)  <->  { z  e.  { w  |  w 
~~  A }  |  A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
) }  =/=  (/) )
107, 9mpbi 220 . . . 4  |-  { z  e.  { w  |  w  ~~  A }  |  A. y  e.  {
w  |  w  ~~  A }  ( rank `  z )  C_  ( rank `  y ) }  =/=  (/)
11 rabn0 3958 . . . 4  |-  ( { z  e.  { w  |  w  ~~  A }  |  A. y  e.  {
w  |  w  ~~  A }  ( rank `  z )  C_  ( rank `  y ) }  =/=  (/)  <->  E. z  e.  {
w  |  w  ~~  A } A. y  e. 
{ w  |  w 
~~  A }  ( rank `  z )  C_  ( rank `  y )
)
1210, 11mpbi 220 . . 3  |-  E. z  e.  { w  |  w 
~~  A } A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
)
13 vex 3203 . . . . . . . 8  |-  z  e. 
_V
14 breq1 4656 . . . . . . . 8  |-  ( w  =  z  ->  (
w  ~~  A  <->  z  ~~  A ) )
1513, 14elab 3350 . . . . . . 7  |-  ( z  e.  { w  |  w  ~~  A }  <->  z 
~~  A )
16 breq1 4656 . . . . . . . 8  |-  ( w  =  y  ->  (
w  ~~  A  <->  y  ~~  A ) )
1716ralab 3367 . . . . . . 7  |-  ( A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
)  <->  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )
1815, 17anbi12i 733 . . . . . 6  |-  ( ( z  e.  { w  |  w  ~~  A }  /\  A. y  e.  {
w  |  w  ~~  A }  ( rank `  z )  C_  ( rank `  y ) )  <-> 
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) ) )
19 simpl 473 . . . . . . . . 9  |-  ( ( z  ~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) )  ->  z  ~~  A
)
2019a1i 11 . . . . . . . 8  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  z  ~~  A ) )
21 karden.3 . . . . . . . . . . . 12  |-  C  =  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
22 karden.4 . . . . . . . . . . . 12  |-  D  =  { x  |  ( x  ~~  B  /\  A. y ( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) }
2321, 22eqeq12i 2636 . . . . . . . . . . 11  |-  ( C  =  D  <->  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) ) }  =  { x  |  ( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) } )
24 abbi 2737 . . . . . . . . . . 11  |-  ( A. x ( ( x 
~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )  <-> 
( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) )  <->  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) ) }  =  { x  |  ( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) } )
2523, 24bitr4i 267 . . . . . . . . . 10  |-  ( C  =  D  <->  A. x
( ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) )  <->  ( x  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) ) )
26 breq1 4656 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  ~~  A  <->  z  ~~  A ) )
27 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( rank `  x )  =  ( rank `  z
) )
2827sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  z
)  C_  ( rank `  y ) ) )
2928imbi2d 330 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  ( y  ~~  A  ->  ( rank `  z )  C_  ( rank `  y ) ) ) )
3029albidv 1849 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  A. y
( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) )
3126, 30anbi12d 747 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( x  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  x )  C_  ( rank `  y )
) )  <->  ( z  ~~  A  /\  A. y
( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
32 breq1 4656 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  ~~  B  <->  z  ~~  B ) )
3328imbi2d 330 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  ( y  ~~  B  ->  ( rank `  z )  C_  ( rank `  y ) ) ) )
3433albidv 1849 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( A. y ( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) )
3532, 34anbi12d 747 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) )  <->  ( z  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
3631, 35bibi12d 335 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) )  <->  ( x  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) )  <->  ( ( z 
~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  z
)  C_  ( rank `  y ) ) )  <-> 
( z  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  z )  C_  ( rank `  y )
) ) ) ) )
3736spv 2260 . . . . . . . . . 10  |-  ( A. x ( ( x 
~~  A  /\  A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )  <-> 
( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) )  -> 
( ( z  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  z )  C_  ( rank `  y
) ) )  <->  ( z  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
3825, 37sylbi 207 . . . . . . . . 9  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  <->  ( z  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) ) ) )
39 simpl 473 . . . . . . . . 9  |-  ( ( z  ~~  B  /\  A. y ( y  ~~  B  ->  ( rank `  z
)  C_  ( rank `  y ) ) )  ->  z  ~~  B
)
4038, 39syl6bi 243 . . . . . . . 8  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  z  ~~  B ) )
4120, 40jcad 555 . . . . . . 7  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  (
z  ~~  A  /\  z  ~~  B ) ) )
42 ensym 8005 . . . . . . . 8  |-  ( z 
~~  A  ->  A  ~~  z )
43 entr 8008 . . . . . . . 8  |-  ( ( A  ~~  z  /\  z  ~~  B )  ->  A  ~~  B )
4442, 43sylan 488 . . . . . . 7  |-  ( ( z  ~~  A  /\  z  ~~  B )  ->  A  ~~  B )
4541, 44syl6 35 . . . . . 6  |-  ( C  =  D  ->  (
( z  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  z )  C_  ( rank `  y )
) )  ->  A  ~~  B ) )
4618, 45syl5bi 232 . . . . 5  |-  ( C  =  D  ->  (
( z  e.  {
w  |  w  ~~  A }  /\  A. y  e.  { w  |  w 
~~  A }  ( rank `  z )  C_  ( rank `  y )
)  ->  A  ~~  B ) )
4746expd 452 . . . 4  |-  ( C  =  D  ->  (
z  e.  { w  |  w  ~~  A }  ->  ( A. y  e. 
{ w  |  w 
~~  A }  ( rank `  z )  C_  ( rank `  y )  ->  A  ~~  B ) ) )
4847rexlimdv 3030 . . 3  |-  ( C  =  D  ->  ( E. z  e.  { w  |  w  ~~  A } A. y  e.  { w  |  w  ~~  A } 
( rank `  z )  C_  ( rank `  y
)  ->  A  ~~  B ) )
4912, 48mpi 20 . 2  |-  ( C  =  D  ->  A  ~~  B )
50 enen2 8101 . . . . 5  |-  ( A 
~~  B  ->  (
x  ~~  A  <->  x  ~~  B ) )
51 enen2 8101 . . . . . . 7  |-  ( A 
~~  B  ->  (
y  ~~  A  <->  y  ~~  B ) )
5251imbi1d 331 . . . . . 6  |-  ( A 
~~  B  ->  (
( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  ( y  ~~  B  ->  ( rank `  x )  C_  ( rank `  y ) ) ) )
5352albidv 1849 . . . . 5  |-  ( A 
~~  B  ->  ( A. y ( y  ~~  A  ->  ( rank `  x
)  C_  ( rank `  y ) )  <->  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) )
5450, 53anbi12d 747 . . . 4  |-  ( A 
~~  B  ->  (
( x  ~~  A  /\  A. y ( y 
~~  A  ->  ( rank `  x )  C_  ( rank `  y )
) )  <->  ( x  ~~  B  /\  A. y
( y  ~~  B  ->  ( rank `  x
)  C_  ( rank `  y ) ) ) ) )
5554abbidv 2741 . . 3  |-  ( A 
~~  B  ->  { x  |  ( x  ~~  A  /\  A. y ( y  ~~  A  -> 
( rank `  x )  C_  ( rank `  y
) ) ) }  =  { x  |  ( x  ~~  B  /\  A. y ( y 
~~  B  ->  ( rank `  x )  C_  ( rank `  y )
) ) } )
5655, 21, 223eqtr4g 2681 . 2  |-  ( A 
~~  B  ->  C  =  D )
5749, 56impbii 199 1  |-  ( C  =  D  <->  A  ~~  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888    ~~ cen 7952   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-r1 8627  df-rank 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator