MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac13 Structured version   Visualization version   Unicode version

Theorem dfac13 8964
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac13  |-  (CHOICE  <->  A. x  x  e. AC  x )

Proof of Theorem dfac13
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  x  e. 
_V
2 acacni 8962 . . . . 5  |-  ( (CHOICE  /\  x  e.  _V )  -> AC  x  =  _V )
31, 2mpan2 707 . . . 4  |-  (CHOICE  -> AC  x  =  _V )
41, 3syl5eleqr 2708 . . 3  |-  (CHOICE  ->  x  e. AC  x )
54alrimiv 1855 . 2  |-  (CHOICE  ->  A. x  x  e. AC  x )
6 vpwex 4849 . . . . . . . 8  |-  ~P z  e.  _V
7 id 22 . . . . . . . . 9  |-  ( x  =  ~P z  ->  x  =  ~P z
)
8 acneq 8866 . . . . . . . . 9  |-  ( x  =  ~P z  -> AC  x  = AC  ~P z )
97, 8eleq12d 2695 . . . . . . . 8  |-  ( x  =  ~P z  -> 
( x  e. AC  x  <->  ~P z  e. AC 
~P z ) )
106, 9spcv 3299 . . . . . . 7  |-  ( A. x  x  e. AC  x  ->  ~P z  e. AC  ~P z
)
11 vex 3203 . . . . . . . 8  |-  y  e. 
_V
12 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
1312canth2 8113 . . . . . . . . . 10  |-  z  ~<  ~P z
14 sdomdom 7983 . . . . . . . . . 10  |-  ( z 
~<  ~P z  ->  z  ~<_  ~P z )
15 acndom2 8877 . . . . . . . . . 10  |-  ( z  ~<_  ~P z  ->  ( ~P z  e. AC  ~P z  ->  z  e. AC  ~P z
) )
1613, 14, 15mp2b 10 . . . . . . . . 9  |-  ( ~P z  e. AC  ~P z  ->  z  e. AC  ~P z
)
17 acnnum 8875 . . . . . . . . 9  |-  ( z  e. AC  ~P z  <->  z  e.  dom  card )
1816, 17sylib 208 . . . . . . . 8  |-  ( ~P z  e. AC  ~P z  ->  z  e.  dom  card )
19 numacn 8872 . . . . . . . 8  |-  ( y  e.  _V  ->  (
z  e.  dom  card  -> 
z  e. AC  y ) )
2011, 18, 19mpsyl 68 . . . . . . 7  |-  ( ~P z  e. AC  ~P z  ->  z  e. AC  y )
2110, 20syl 17 . . . . . 6  |-  ( A. x  x  e. AC  x  -> 
z  e. AC  y )
2212a1i 11 . . . . . 6  |-  ( A. x  x  e. AC  x  -> 
z  e.  _V )
2321, 222thd 255 . . . . 5  |-  ( A. x  x  e. AC  x  -> 
( z  e. AC  y  <->  z  e.  _V ) )
2423eqrdv 2620 . . . 4  |-  ( A. x  x  e. AC  x  -> AC  y  =  _V )
2524alrimiv 1855 . . 3  |-  ( A. x  x  e. AC  x  ->  A. yAC  y  =  _V )
26 dfacacn 8963 . . 3  |-  (CHOICE  <->  A. yAC  y  =  _V )
2725, 26sylibr 224 . 2  |-  ( A. x  x  e. AC  x  -> CHOICE )
285, 27impbii 199 1  |-  (CHOICE  <->  A. x  x  e. AC  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761  AC wacn 8764  CHOICEwac 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator