| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfacacn | Structured version Visualization version Unicode version | ||
| Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| dfacacn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . 4
| |
| 2 | acacni 8962 |
. . . 4
| |
| 3 | 1, 2 | mpan2 707 |
. . 3
|
| 4 | 3 | alrimiv 1855 |
. 2
|
| 5 | vex 3203 |
. . . . . . 7
| |
| 6 | difexg 4808 |
. . . . . . 7
| |
| 7 | 5, 6 | ax-mp 5 |
. . . . . 6
|
| 8 | acneq 8866 |
. . . . . . 7
| |
| 9 | 8 | eqeq1d 2624 |
. . . . . 6
|
| 10 | 7, 9 | spcv 3299 |
. . . . 5
|
| 11 | vuniex 6954 |
. . . . . . 7
| |
| 12 | id 22 |
. . . . . . 7
| |
| 13 | 11, 12 | syl5eleqr 2708 |
. . . . . 6
|
| 14 | eldifi 3732 |
. . . . . . . . 9
| |
| 15 | elssuni 4467 |
. . . . . . . . 9
| |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
|
| 17 | eldifsni 4320 |
. . . . . . . 8
| |
| 18 | 16, 17 | jca 554 |
. . . . . . 7
|
| 19 | 18 | rgen 2922 |
. . . . . 6
|
| 20 | acni2 8869 |
. . . . . 6
| |
| 21 | 13, 19, 20 | sylancl 694 |
. . . . 5
|
| 22 | 5 | mptex 6486 |
. . . . . . 7
|
| 23 | simpr 477 |
. . . . . . . . 9
| |
| 24 | eldifsn 4317 |
. . . . . . . . . . . 12
| |
| 25 | 24 | imbi1i 339 |
. . . . . . . . . . 11
|
| 26 | fveq2 6191 |
. . . . . . . . . . . . . . 15
| |
| 27 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 28 | fvex 6201 |
. . . . . . . . . . . . . . 15
| |
| 29 | 26, 27, 28 | fvmpt 6282 |
. . . . . . . . . . . . . 14
|
| 30 | 14, 29 | syl 17 |
. . . . . . . . . . . . 13
|
| 31 | 30 | eleq1d 2686 |
. . . . . . . . . . . 12
|
| 32 | 31 | pm5.74i 260 |
. . . . . . . . . . 11
|
| 33 | impexp 462 |
. . . . . . . . . . 11
| |
| 34 | 25, 32, 33 | 3bitr3i 290 |
. . . . . . . . . 10
|
| 35 | 34 | ralbii2 2978 |
. . . . . . . . 9
|
| 36 | 23, 35 | sylib 208 |
. . . . . . . 8
|
| 37 | fvrn0 6216 |
. . . . . . . . . . 11
| |
| 38 | 37 | rgenw 2924 |
. . . . . . . . . 10
|
| 39 | 27 | fmpt 6381 |
. . . . . . . . . 10
|
| 40 | 38, 39 | mpbi 220 |
. . . . . . . . 9
|
| 41 | ffn 6045 |
. . . . . . . . 9
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . 8
|
| 43 | 36, 42 | jctil 560 |
. . . . . . 7
|
| 44 | fneq1 5979 |
. . . . . . . . 9
| |
| 45 | fveq1 6190 |
. . . . . . . . . . . 12
| |
| 46 | 45 | eleq1d 2686 |
. . . . . . . . . . 11
|
| 47 | 46 | imbi2d 330 |
. . . . . . . . . 10
|
| 48 | 47 | ralbidv 2986 |
. . . . . . . . 9
|
| 49 | 44, 48 | anbi12d 747 |
. . . . . . . 8
|
| 50 | 49 | spcegv 3294 |
. . . . . . 7
|
| 51 | 22, 43, 50 | mpsyl 68 |
. . . . . 6
|
| 52 | 51 | exlimiv 1858 |
. . . . 5
|
| 53 | 10, 21, 52 | 3syl 18 |
. . . 4
|
| 54 | 53 | alrimiv 1855 |
. . 3
|
| 55 | dfac4 8945 |
. . 3
| |
| 56 | 54, 55 | sylibr 224 |
. 2
|
| 57 | 4, 56 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-card 8765 df-acn 8768 df-ac 8939 |
| This theorem is referenced by: dfac13 8964 |
| Copyright terms: Public domain | W3C validator |