MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiel Structured version   Visualization version   Unicode version

Theorem acsfiel 16315
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
acsfiel  |-  ( C  e.  (ACS `  X
)  ->  ( S  e.  C  <->  ( S  C_  X  /\  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) ) )
Distinct variable groups:    y, C    y, F    y, S    y, X

Proof of Theorem acsfiel
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 acsmre 16313 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  C  e.  (Moore `  X ) )
2 mress 16253 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  S  e.  C )  ->  S  C_  X )
31, 2sylan 488 . . . 4  |-  ( ( C  e.  (ACS `  X )  /\  S  e.  C )  ->  S  C_  X )
43ex 450 . . 3  |-  ( C  e.  (ACS `  X
)  ->  ( S  e.  C  ->  S  C_  X ) )
54pm4.71rd 667 . 2  |-  ( C  e.  (ACS `  X
)  ->  ( S  e.  C  <->  ( S  C_  X  /\  S  e.  C
) ) )
6 elfvdm 6220 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  X  e.  dom ACS )
7 elpw2g 4827 . . . . . 6  |-  ( X  e.  dom ACS  ->  ( S  e.  ~P X  <->  S  C_  X
) )
86, 7syl 17 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( S  e.  ~P X  <->  S  C_  X
) )
98biimpar 502 . . . 4  |-  ( ( C  e.  (ACS `  X )  /\  S  C_  X )  ->  S  e.  ~P X )
10 isacs2.f . . . . . . 7  |-  F  =  (mrCls `  C )
1110isacs2 16314 . . . . . 6  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  X ( s  e.  C  <->  A. y  e.  ( ~P s  i^i  Fin ) ( F `  y )  C_  s
) ) )
1211simprbi 480 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  A. s  e.  ~P  X ( s  e.  C  <->  A. y  e.  ( ~P s  i^i 
Fin ) ( F `
 y )  C_  s ) )
1312adantr 481 . . . 4  |-  ( ( C  e.  (ACS `  X )  /\  S  C_  X )  ->  A. s  e.  ~P  X ( s  e.  C  <->  A. y  e.  ( ~P s  i^i 
Fin ) ( F `
 y )  C_  s ) )
14 eleq1 2689 . . . . . 6  |-  ( s  =  S  ->  (
s  e.  C  <->  S  e.  C ) )
15 pweq 4161 . . . . . . . 8  |-  ( s  =  S  ->  ~P s  =  ~P S
)
1615ineq1d 3813 . . . . . . 7  |-  ( s  =  S  ->  ( ~P s  i^i  Fin )  =  ( ~P S  i^i  Fin ) )
17 sseq2 3627 . . . . . . 7  |-  ( s  =  S  ->  (
( F `  y
)  C_  s  <->  ( F `  y )  C_  S
) )
1816, 17raleqbidv 3152 . . . . . 6  |-  ( s  =  S  ->  ( A. y  e.  ( ~P s  i^i  Fin )
( F `  y
)  C_  s  <->  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) )
1914, 18bibi12d 335 . . . . 5  |-  ( s  =  S  ->  (
( s  e.  C  <->  A. y  e.  ( ~P s  i^i  Fin )
( F `  y
)  C_  s )  <->  ( S  e.  C  <->  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) ) )
2019rspcva 3307 . . . 4  |-  ( ( S  e.  ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  A. y  e.  ( ~P s  i^i  Fin ) ( F `  y )  C_  s
) )  ->  ( S  e.  C  <->  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) )
219, 13, 20syl2anc 693 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  S  C_  X )  ->  ( S  e.  C  <->  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) )
2221pm5.32da 673 . 2  |-  ( C  e.  (ACS `  X
)  ->  ( ( S  C_  X  /\  S  e.  C )  <->  ( S  C_  X  /\  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) ) )
235, 22bitrd 268 1  |-  ( C  e.  (ACS `  X
)  ->  ( S  e.  C  <->  ( S  C_  X  /\  A. y  e.  ( ~P S  i^i  Fin ) ( F `  y )  C_  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   dom cdm 5114   ` cfv 5888   Fincfn 7955  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247  df-acs 16249
This theorem is referenced by:  acsfiel2  16316  isacs3lem  17166
  Copyright terms: Public domain W3C validator