MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq2 Structured version   Visualization version   Unicode version

Theorem addpipq2 9758
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  = 
<. ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )

Proof of Theorem addpipq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( 1st `  x )  =  ( 1st `  A
) )
21oveq1d 6665 . . . 4  |-  ( x  =  A  ->  (
( 1st `  x
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  A
)  .N  ( 2nd `  y ) ) )
3 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( 2nd `  x )  =  ( 2nd `  A
) )
43oveq2d 6666 . . . 4  |-  ( x  =  A  ->  (
( 1st `  y
)  .N  ( 2nd `  x ) )  =  ( ( 1st `  y
)  .N  ( 2nd `  A ) ) )
52, 4oveq12d 6668 . . 3  |-  ( x  =  A  ->  (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  A ) ) ) )
63oveq1d 6665 . . 3  |-  ( x  =  A  ->  (
( 2nd `  x
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  y ) ) )
75, 6opeq12d 4410 . 2  |-  ( x  =  A  ->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  =  <. ( ( ( 1st `  A
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  y ) )
>. )
8 fveq2 6191 . . . . 5  |-  ( y  =  B  ->  ( 2nd `  y )  =  ( 2nd `  B
) )
98oveq2d 6666 . . . 4  |-  ( y  =  B  ->  (
( 1st `  A
)  .N  ( 2nd `  y ) )  =  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )
10 fveq2 6191 . . . . 5  |-  ( y  =  B  ->  ( 1st `  y )  =  ( 1st `  B
) )
1110oveq1d 6665 . . . 4  |-  ( y  =  B  ->  (
( 1st `  y
)  .N  ( 2nd `  A ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
129, 11oveq12d 6668 . . 3  |-  ( y  =  B  ->  (
( ( 1st `  A
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
138oveq2d 6666 . . 3  |-  ( y  =  B  ->  (
( 2nd `  A
)  .N  ( 2nd `  y ) )  =  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )
1412, 13opeq12d 4410 . 2  |-  ( y  =  B  ->  <. (
( ( 1st `  A
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  y ) )
>.  =  <. ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>. )
15 df-plpq 9730 . 2  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
16 opex 4932 . 2  |-  <. (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  e.  _V
177, 14, 15, 16ovmpt2 6796 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  B )  = 
<. ( ( ( 1st `  A )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B
) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    +N cpli 9667    .N cmi 9668    +pQ cplpq 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-plpq 9730
This theorem is referenced by:  addpipq  9759  addcompq  9772  adderpqlem  9776  addassnq  9780  distrnq  9783  ltanq  9793
  Copyright terms: Public domain W3C validator