| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addassnq | Structured version Visualization version Unicode version | ||
| Description: Addition of positive fractions is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addassnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addasspi 9717 |
. . . . . . . 8
| |
| 2 | ovex 6678 |
. . . . . . . . . . 11
| |
| 3 | ovex 6678 |
. . . . . . . . . . 11
| |
| 4 | fvex 6201 |
. . . . . . . . . . 11
| |
| 5 | mulcompi 9718 |
. . . . . . . . . . 11
| |
| 6 | distrpi 9720 |
. . . . . . . . . . 11
| |
| 7 | 2, 3, 4, 5, 6 | caovdir 6868 |
. . . . . . . . . 10
|
| 8 | mulasspi 9719 |
. . . . . . . . . . 11
| |
| 9 | 8 | oveq1i 6660 |
. . . . . . . . . 10
|
| 10 | 7, 9 | eqtri 2644 |
. . . . . . . . 9
|
| 11 | 10 | oveq1i 6660 |
. . . . . . . 8
|
| 12 | ovex 6678 |
. . . . . . . . . . 11
| |
| 13 | ovex 6678 |
. . . . . . . . . . 11
| |
| 14 | fvex 6201 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14, 5, 6 | caovdir 6868 |
. . . . . . . . . 10
|
| 16 | fvex 6201 |
. . . . . . . . . . . 12
| |
| 17 | mulasspi 9719 |
. . . . . . . . . . . 12
| |
| 18 | 16, 4, 14, 5, 17 | caov32 6861 |
. . . . . . . . . . 11
|
| 19 | mulasspi 9719 |
. . . . . . . . . . . 12
| |
| 20 | mulcompi 9718 |
. . . . . . . . . . . . 13
| |
| 21 | 20 | oveq2i 6661 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | eqtri 2644 |
. . . . . . . . . . 11
|
| 23 | 18, 22 | oveq12i 6662 |
. . . . . . . . . 10
|
| 24 | 15, 23 | eqtri 2644 |
. . . . . . . . 9
|
| 25 | 24 | oveq2i 6661 |
. . . . . . . 8
|
| 26 | 1, 11, 25 | 3eqtr4i 2654 |
. . . . . . 7
|
| 27 | mulasspi 9719 |
. . . . . . 7
| |
| 28 | 26, 27 | opeq12i 4407 |
. . . . . 6
|
| 29 | elpqn 9747 |
. . . . . . . . . 10
| |
| 30 | 29 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 31 | elpqn 9747 |
. . . . . . . . . 10
| |
| 32 | 31 | 3ad2ant2 1083 |
. . . . . . . . 9
|
| 33 | addpipq2 9758 |
. . . . . . . . 9
| |
| 34 | 30, 32, 33 | syl2anc 693 |
. . . . . . . 8
|
| 35 | relxp 5227 |
. . . . . . . . 9
| |
| 36 | elpqn 9747 |
. . . . . . . . . 10
| |
| 37 | 36 | 3ad2ant3 1084 |
. . . . . . . . 9
|
| 38 | 1st2nd 7214 |
. . . . . . . . 9
| |
| 39 | 35, 37, 38 | sylancr 695 |
. . . . . . . 8
|
| 40 | 34, 39 | oveq12d 6668 |
. . . . . . 7
|
| 41 | xp1st 7198 |
. . . . . . . . . . 11
| |
| 42 | 30, 41 | syl 17 |
. . . . . . . . . 10
|
| 43 | xp2nd 7199 |
. . . . . . . . . . 11
| |
| 44 | 32, 43 | syl 17 |
. . . . . . . . . 10
|
| 45 | mulclpi 9715 |
. . . . . . . . . 10
| |
| 46 | 42, 44, 45 | syl2anc 693 |
. . . . . . . . 9
|
| 47 | xp1st 7198 |
. . . . . . . . . . 11
| |
| 48 | 32, 47 | syl 17 |
. . . . . . . . . 10
|
| 49 | xp2nd 7199 |
. . . . . . . . . . 11
| |
| 50 | 30, 49 | syl 17 |
. . . . . . . . . 10
|
| 51 | mulclpi 9715 |
. . . . . . . . . 10
| |
| 52 | 48, 50, 51 | syl2anc 693 |
. . . . . . . . 9
|
| 53 | addclpi 9714 |
. . . . . . . . 9
| |
| 54 | 46, 52, 53 | syl2anc 693 |
. . . . . . . 8
|
| 55 | mulclpi 9715 |
. . . . . . . . 9
| |
| 56 | 50, 44, 55 | syl2anc 693 |
. . . . . . . 8
|
| 57 | xp1st 7198 |
. . . . . . . . 9
| |
| 58 | 37, 57 | syl 17 |
. . . . . . . 8
|
| 59 | xp2nd 7199 |
. . . . . . . . 9
| |
| 60 | 37, 59 | syl 17 |
. . . . . . . 8
|
| 61 | addpipq 9759 |
. . . . . . . 8
| |
| 62 | 54, 56, 58, 60, 61 | syl22anc 1327 |
. . . . . . 7
|
| 63 | 40, 62 | eqtrd 2656 |
. . . . . 6
|
| 64 | 1st2nd 7214 |
. . . . . . . . 9
| |
| 65 | 35, 30, 64 | sylancr 695 |
. . . . . . . 8
|
| 66 | addpipq2 9758 |
. . . . . . . . 9
| |
| 67 | 32, 37, 66 | syl2anc 693 |
. . . . . . . 8
|
| 68 | 65, 67 | oveq12d 6668 |
. . . . . . 7
|
| 69 | mulclpi 9715 |
. . . . . . . . . 10
| |
| 70 | 48, 60, 69 | syl2anc 693 |
. . . . . . . . 9
|
| 71 | mulclpi 9715 |
. . . . . . . . . 10
| |
| 72 | 58, 44, 71 | syl2anc 693 |
. . . . . . . . 9
|
| 73 | addclpi 9714 |
. . . . . . . . 9
| |
| 74 | 70, 72, 73 | syl2anc 693 |
. . . . . . . 8
|
| 75 | mulclpi 9715 |
. . . . . . . . 9
| |
| 76 | 44, 60, 75 | syl2anc 693 |
. . . . . . . 8
|
| 77 | addpipq 9759 |
. . . . . . . 8
| |
| 78 | 42, 50, 74, 76, 77 | syl22anc 1327 |
. . . . . . 7
|
| 79 | 68, 78 | eqtrd 2656 |
. . . . . 6
|
| 80 | 28, 63, 79 | 3eqtr4a 2682 |
. . . . 5
|
| 81 | 80 | fveq2d 6195 |
. . . 4
|
| 82 | adderpq 9778 |
. . . 4
| |
| 83 | adderpq 9778 |
. . . 4
| |
| 84 | 81, 82, 83 | 3eqtr4g 2681 |
. . 3
|
| 85 | addpqnq 9760 |
. . . . 5
| |
| 86 | 85 | 3adant3 1081 |
. . . 4
|
| 87 | nqerid 9755 |
. . . . . 6
| |
| 88 | 87 | eqcomd 2628 |
. . . . 5
|
| 89 | 88 | 3ad2ant3 1084 |
. . . 4
|
| 90 | 86, 89 | oveq12d 6668 |
. . 3
|
| 91 | nqerid 9755 |
. . . . . 6
| |
| 92 | 91 | eqcomd 2628 |
. . . . 5
|
| 93 | 92 | 3ad2ant1 1082 |
. . . 4
|
| 94 | addpqnq 9760 |
. . . . 5
| |
| 95 | 94 | 3adant1 1079 |
. . . 4
|
| 96 | 93, 95 | oveq12d 6668 |
. . 3
|
| 97 | 84, 90, 96 | 3eqtr4d 2666 |
. 2
|
| 98 | addnqf 9770 |
. . . 4
| |
| 99 | 98 | fdmi 6052 |
. . 3
|
| 100 | 0nnq 9746 |
. . 3
| |
| 101 | 99, 100 | ndmovass 6822 |
. 2
|
| 102 | 97, 101 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-1nq 9738 |
| This theorem is referenced by: ltaddnq 9796 addasspr 9844 prlem934 9855 ltexprlem7 9864 |
| Copyright terms: Public domain | W3C validator |