MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpipq Structured version   Visualization version   Unicode version

Theorem addpipq 9759
Description: Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addpipq  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  +pQ  <. C ,  D >. )  =  <. ( ( A  .N  D
)  +N  ( C  .N  B ) ) ,  ( B  .N  D ) >. )

Proof of Theorem addpipq
StepHypRef Expression
1 opelxpi 5148 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
2 opelxpi 5148 . . 3  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
3 addpipq2 9758 . . 3  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( <. A ,  B >.  +pQ 
<. C ,  D >. )  =  <. ( ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  +N  (
( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. )
) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
41, 2, 3syl2an 494 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  +pQ  <. C ,  D >. )  =  <. ( ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
)  +N  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >. )
5 op1stg 7180 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
6 op2ndg 7181 . . . . 5  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
75, 6oveqan12d 6669 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( A  .N  D ) )
8 op1stg 7180 . . . . 5  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
9 op2ndg 7181 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
108, 9oveqan12rd 6670 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) )  =  ( C  .N  B ) )
117, 10oveq12d 6668 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( (
( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
)  +N  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) ) )  =  ( ( A  .N  D )  +N  ( C  .N  B ) ) )
129, 6oveqan12d 6669 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. ) )  =  ( B  .N  D ) )
1311, 12opeq12d 4410 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  <. ( ( ( 1st `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
)  +N  ( ( 1st `  <. C ,  D >. )  .N  ( 2nd `  <. A ,  B >. ) ) ) ,  ( ( 2nd `  <. A ,  B >. )  .N  ( 2nd `  <. C ,  D >. )
) >.  =  <. (
( A  .N  D
)  +N  ( C  .N  B ) ) ,  ( B  .N  D ) >. )
144, 13eqtrd 2656 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  +pQ  <. C ,  D >. )  =  <. ( ( A  .N  D
)  +N  ( C  .N  B ) ) ,  ( B  .N  D ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    +N cpli 9667    .N cmi 9668    +pQ cplpq 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-plpq 9730
This theorem is referenced by:  addassnq  9780  distrnq  9783  1lt2nq  9795  ltexnq  9797  prlem934  9855
  Copyright terms: Public domain W3C validator