MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adderpqlem Structured version   Visualization version   Unicode version

Theorem adderpqlem 9776
Description: Lemma for adderpq 9778. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
adderpqlem  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( A  +pQ  C )  ~Q  ( B 
+pQ  C ) ) )

Proof of Theorem adderpqlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7198 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
213ad2ant1 1082 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  A )  e.  N. )
3 xp2nd 7199 . . . . . 6  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
433ad2ant3 1084 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  C )  e.  N. )
5 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  C ) )  e. 
N. )
62, 4, 5syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  A )  .N  ( 2nd `  C
) )  e.  N. )
7 xp1st 7198 . . . . . 6  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
873ad2ant3 1084 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  C )  e.  N. )
9 xp2nd 7199 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
1093ad2ant1 1082 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  A )  e.  N. )
11 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
128, 10, 11syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  C )  .N  ( 2nd `  A
) )  e.  N. )
13 addclpi 9714 . . . 4  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
146, 12, 13syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
15 mulclpi 9715 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )
1610, 4, 15syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  A )  .N  ( 2nd `  C
) )  e.  N. )
17 xp1st 7198 . . . . . 6  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
18173ad2ant2 1083 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  B )  e.  N. )
19 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
2018, 4, 19syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  B )  .N  ( 2nd `  C
) )  e.  N. )
21 xp2nd 7199 . . . . . 6  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
22213ad2ant2 1083 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  B )  e.  N. )
23 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
248, 22, 23syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  C )  .N  ( 2nd `  B
) )  e.  N. )
25 addclpi 9714 . . . 4  |-  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
2620, 24, 25syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
27 mulclpi 9715 . . . 4  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
2822, 4, 27syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  B )  .N  ( 2nd `  C
) )  e.  N. )
29 enqbreq 9741 . . 3  |-  ( ( ( ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )  /\  (
( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  e.  N.  /\  ( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. ) )  -> 
( <. ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C ) )
>.  ~Q  <. ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. 
<->  ( ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ) ) )
3014, 16, 26, 28, 29syl22anc 1327 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( <. ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C ) )
>.  ~Q  <. ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. 
<->  ( ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ) ) )
31 addpipq2 9758 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( A  +pQ  C )  = 
<. ( ( ( 1st `  A )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C
) ) >. )
32313adant2 1080 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  +pQ  C )  =  <. ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C ) )
>. )
33 addpipq2 9758 . . . 4  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  +pQ  C )  = 
<. ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) >. )
34333adant1 1079 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( B  +pQ  C )  =  <. ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. )
3532, 34breq12d 4666 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( A  +pQ  C )  ~Q  ( B  +pQ  C )  <->  <. ( ( ( 1st `  A )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C
) ) >.  ~Q  <. ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. ) )
36 enqbreq2 9742 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
37363adant3 1081 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B ) )  =  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) )
38 mulclpi 9715 . . . . 5  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
394, 4, 38syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  C )  .N  ( 2nd `  C
) )  e.  N. )
40 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
412, 22, 40syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )
42 mulcanpi 9722 . . . 4  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
4339, 41, 42syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
44 mulcompi 9718 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
45 fvex 6201 . . . . . . . . 9  |-  ( 1st `  A )  e.  _V
46 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  B )  e.  _V
47 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  C )  e.  _V
48 mulcompi 9718 . . . . . . . . 9  |-  ( x  .N  y )  =  ( y  .N  x
)
49 mulasspi 9719 . . . . . . . . 9  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
5045, 46, 47, 48, 49, 47caov4 6865 . . . . . . . 8  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
5144, 50eqtri 2644 . . . . . . 7  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
52 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  A )  e.  _V
53 fvex 6201 . . . . . . . . 9  |-  ( 1st `  C )  e.  _V
5452, 47, 53, 48, 49, 46caov4 6865 . . . . . . . 8  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
55 mulcompi 9718 . . . . . . . . 9  |-  ( ( 2nd `  A )  .N  ( 1st `  C
) )  =  ( ( 1st `  C
)  .N  ( 2nd `  A ) )
56 mulcompi 9718 . . . . . . . . 9  |-  ( ( 2nd `  C )  .N  ( 2nd `  B
) )  =  ( ( 2nd `  B
)  .N  ( 2nd `  C ) )
5755, 56oveq12i 6662 . . . . . . . 8  |-  ( ( ( 2nd `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
5854, 57eqtri 2644 . . . . . . 7  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
5951, 58oveq12i 6662 . . . . . 6  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) ) )
60 addcompi 9716 . . . . . 6  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) )
61 ovex 6678 . . . . . . 7  |-  ( ( 1st `  A )  .N  ( 2nd `  C
) )  e.  _V
62 ovex 6678 . . . . . . 7  |-  ( ( 1st `  C )  .N  ( 2nd `  A
) )  e.  _V
63 ovex 6678 . . . . . . 7  |-  ( ( 2nd `  B )  .N  ( 2nd `  C
) )  e.  _V
64 distrpi 9720 . . . . . . 7  |-  ( x  .N  ( y  +N  z ) )  =  ( ( x  .N  y )  +N  (
x  .N  z ) )
6561, 62, 63, 48, 64caovdir 6868 . . . . . 6  |-  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) ) )
6659, 60, 653eqtr4i 2654 . . . . 5  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )
67 addcompi 9716 . . . . . 6  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) )
68 mulasspi 9719 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( 2nd `  C )  .N  (
( 2nd `  C
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) ) )
69 mulcompi 9718 . . . . . . . . . 10  |-  ( ( 2nd `  C )  .N  ( ( 2nd `  C )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( 2nd `  C
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )  .N  ( 2nd `  C
) )
70 mulasspi 9719 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( 1st `  B
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  C )  .N  ( 1st `  B
) ) )
71 mulcompi 9718 . . . . . . . . . . . 12  |-  ( ( 2nd `  A )  .N  ( ( 2nd `  C )  .N  ( 1st `  B ) ) )  =  ( ( ( 2nd `  C
)  .N  ( 1st `  B ) )  .N  ( 2nd `  A
) )
72 mulasspi 9719 . . . . . . . . . . . 12  |-  ( ( ( 2nd `  C
)  .N  ( 1st `  B ) )  .N  ( 2nd `  A
) )  =  ( ( 2nd `  C
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )
7370, 71, 723eqtrri 2649 . . . . . . . . . . 11  |-  ( ( 2nd `  C )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( 1st `  B
) )
7473oveq1i 6660 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( ( 1st `  B )  .N  ( 2nd `  A
) ) )  .N  ( 2nd `  C
) )  =  ( ( ( ( 2nd `  A )  .N  ( 2nd `  C ) )  .N  ( 1st `  B
) )  .N  ( 2nd `  C ) )
7569, 74eqtri 2644 . . . . . . . . 9  |-  ( ( 2nd `  C )  .N  ( ( 2nd `  C )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( 1st `  B
) )  .N  ( 2nd `  C ) )
76 mulasspi 9719 . . . . . . . . 9  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( 1st `  B
) )  .N  ( 2nd `  C ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
7775, 76eqtri 2644 . . . . . . . 8  |-  ( ( 2nd `  C )  .N  ( ( 2nd `  C )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )
7868, 77eqtri 2644 . . . . . . 7  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
7978oveq2i 6661 . . . . . 6  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
80 distrpi 9720 . . . . . 6  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  A )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) )  +N  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) )
8167, 79, 803eqtr4i 2654 . . . . 5  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) )
8266, 81eqeq12i 2636 . . . 4  |-  ( ( ( ( ( 2nd `  A )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  <->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ) )
83 mulclpi 9715 . . . . . 6  |-  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
8416, 24, 83syl2anc 693 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
85 mulclpi 9715 . . . . . 6  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) )  e.  N. )
8639, 41, 85syl2anc 693 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  e.  N. )
87 addcanpi 9721 . . . . 5  |-  ( ( ( ( ( 2nd `  A )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  e.  N.  /\  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  e.  N. )  ->  ( ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  <->  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) )
8884, 86, 87syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( ( 2nd `  A )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  <->  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) )
8982, 88syl5rbbr 275 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 1st `  A )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ) ) )
9037, 43, 893bitr2d 296 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( ( ( ( 1st `  A
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ) ) )
9130, 35, 903bitr4rd 301 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( A  +pQ  C )  ~Q  ( B 
+pQ  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    +N cpli 9667    .N cmi 9668    +pQ cplpq 9670    ~Q ceq 9673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-ni 9694  df-pli 9695  df-mi 9696  df-plpq 9730  df-enq 9733
This theorem is referenced by:  adderpq  9778
  Copyright terms: Public domain W3C validator